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Abstract

This paper proposes a novel photometric stereo solution
to jointly estimate surface normals and scattering parame-
ters from a globally planar, homogeneous, translucent ob-
ject. Similar to classic photometric stereo, our method only
requires as few as three observations of the translucent ob-
ject under directional lighting. Naively applying classic
photometric stereo results in blurred photometric normals.
We develop a novel blind deconvolution algorithm based on
inverse rendering for recovering the sharp surface normals
and the material properties. We demonstrate our method on
a variety of translucent objects.

1. Introduction
A commonly used lightweight method for shape acquisi-

tion is photometric stereo [26]. Photometric stereo exploits
the direct relation between the incident irradiance and the
outgoing observed radiance at a surface point to infer the
surface normal from as little as three observations under
directional lighting. While originally developed for Lam-
bertian materials only, it has been extended to handle more
general surface reflectance functions. Photometric stereo is
also commonly applied to translucent materials, such as hu-
man skin. However, the resulting photometric normals are
“blurred” due to the indirect relation between incident irra-
diance and the observed radiance at a surface point [21].

The two most common applications of photometric
stereo are shape recovery and surface detail recovery
(typically followed by an embossing step onto a global
shape [22]). In this paper, we focus on this second appli-
cation for which the impact of translucency on the accuracy
of photometric stereo is particularly striking. We propose
a novel method that computes “deblurred” normals of ho-
mogeneous, translucent, globally planar objects that exhibit
local surface normal variation. In addition, our method also
obtains estimates of the reduced albedo and mean free path
that characterize the appearance of the translucent material.
Notably, our method only requires the same input as “tradi-
tional” photometric stereo (i.e., three or more photographs

under directional lighting). We formulate our method as a
blind deconvolution problem and rely on inverse rendering
to gauge the fitness of the estimated parameters. We vali-
date the effectiveness of our method on a variety of mea-
sured materials, and compare the estimated parameters and
normals to baseline measurements.

2. Related Work
Photometric Stereo Photometric stereo [26] is a
lightweight method for estimating surface normals of Lam-
bertian objects from observations under as few as three di-
rectional light sources. Since its inception, many improve-
ments and variants have been proposed that extend to non-
Lambertian surface reflectance (e.g., [1, 4, 10, 14, 25]),
minimize the impact of shadows [2], and jointly estimate
normals and lighting (e.g., [3, 8, 19, 24]). However, all
these methods assume that the observed radiance at a sur-
face point is directly related to the incident irradiance at
the same surface point only. Ma et al. [20] recognize the
potential issue of subsurface light transport on photomet-
ric stereo, and propose a photometric stereo variant that
relies on polarized spherical gradient illumination to infer
normals from specular reflections (isolated via polarization
differencing), thus avoiding the bias introduced by subsur-
face scattering. Recently, Gu et al. [11] showed that 7
high-frequency multiplexed illumination patterns are suffi-
cient to practically recover surface normals from translu-
cent objects. However, both methods require more complex
hardware and more measurements than classic photometric
stereo. In contrast, the proposed method removes the ef-
fects of translucency in post-processing. This allows us to
maintain the lightweight acquisition procedure and setup of
classic photometric stereo.
Subsurface Scattering The Bidirectional Subsurface Scat-
tering Distribution Function (BSSRDF) [23], an 8D func-
tion, describes the appearance of translucent materials. The
BSSRDF is often split into two components: a component
that models single scattering, and a component that mod-
els multiple scattering. The former can be effectively mod-
eled by a 4D BRDF (i.e. Bidirectional Reflectance Distri-
bution Function) approximation [13]. For optically thick
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materials dominated by scattering, the diffusion approxima-
tion holds for multiple scattered light, (i.e., the dependence
between incident and exitant lighting directions is lost).
Several compact analytical models have been proposed to
model the diffusion approximation of multiple scattering
(also called diffuse BSSRDF) in terms of index of refrac-
tions, and reduced scattering and absorption coefficients.
Jensen et al. [16] model multiple scattering using a dipole
approximation. Donner et al. [6] extend the dipole model to
a multipole model to better model translucent slabs of finite
depth. d’Eon and Irvin [5] propose the quantized diffusion
approximation to better address the excessive blurring of the
dipole approximation and approximate the diffusion profile
by a sum of 64 Gaussians. Recently, Haber et al. [12] intro-
duce the photon beam diffusion approximation that is com-
putationally more convenient than quantized diffusion (i.e.,
it only requires summing as few as 5 dipoles) . Furthermore,
the photon beam diffusion approximation also accounts for
the effects of oblique incident light angles.

Reduced scattering and absorption parameters are ac-
quired from physical material samples by fitting to the ob-
served diffusion profiles (e.g., [9, 16]) under (spatially)
high-frequency illumination. Variations in surface nor-
mals are ignored, potentially introducing incorrect esti-
mates. In contrast, the proposed method uses directional
lighting without spatial variation and relies on surface nor-
mal variation to infer scattering and absorption coefficients.
The method of Donner et al. also employs uniform lighting
and relies on multispectral observations to estimate the re-
duced scattering and absorption coefficients. However, their
method is limited to skin only. Similar to us, Zhu et al. [27]
also exploit local surface variations (i.e., curvature) to infer
the BSSRDF parameters under spherical gradient illumina-
tion. However, their method requires knowledge of the sur-
face geometry, and uses a large and complex setup. In con-
trast, the proposed method requires as few as three lights
and jointly estimates the BSSRDF parameters and normals.
Image Deblurring The proposed method is also related
to blind image deconvolution (e.g., [17, 18]). Instead
of deblurring a single natural image, we deblur normal
maps/irradiance images which exhibit different statistics.
Furthermore, our “blur” kernel is not sparse. We do not
claim any technical contributions to blind deconvolution,
but rather rely on the developments in this field.

3. Method
In the following, we assume that the surface is globally

planar and boundless with localized surface normal varia-
tions. Furthermore, we assume that the surface consists of
an optically thick, homogeneous translucent material with
a known index of refraction. We will consider only multi-
ple scattering, ignoring single scattering and direct surface
reflections.

3.1. Background

The observed radiance L(xo, ωo) at a position xo in a
direction ωo of a translucent material under a directional
light source L(ωi) is given by [16]:

L(xo, ωo) =
1

π

∫
A

Fr(η, (n(xo) · ωo))Rd(xi, ωi, xo, ωo)

Fr(η, (n(xi) · ωi))L(ωi)(n(xi) · ωi)dxi,
(1)

where Fr is the Fresnel transmission at the incident and ex-
itant surface point with index of refraction η, n(x) is the
surface normal at x, and Rd is the diffuse BSSRDF. Sev-
eral models exist for modeling Rd, ranging from the clas-
sical dipole-diffusion model [16] to the quantized diffusion
model [5]. In this paper we employ the photon beam dif-
fusion model [12] which accounts for oblique incident light
angles and which is fast to evaluate: Rd(||xi − xo||, ωi).
We parameterize Rd in terms of reduced albedo α′ = σ′

s

σ′
t

and diffuse mean free path ld = 1
σ′
t
, which provides a more

intuitive description than a parameterization in terms of re-
duced scattering σ′s and reduced extinction σ′t – a change
in α′ roughly corresponds to a change in “profile-height”,
while a change in ld roughly corresponds to a change in
“profile-width” or extent [7].

As shown in [21], ignoring the subsurface light trans-
port and directly applying photometric stereo [26] to the
observed radiance yields a “blurred” normal estimate. This
can be clearly seen by rewriting Eq. (1) as

L′ωi
= Rdωi

∗ Iωi
, (2)

where ’∗’ is the convolution operator,L′ is the ratio between
exitant radiance and outgoing Fresnel transmittance, and I
is the product between foreshortening and incident Fresnel.
Note that I depends only on the dot product between the
surface normal n(xi) and the incident lighting direction ωi.
To better understand the impact of this ’blurring’ of the in-
cident irradiance, consider the following didactic example
were η = 1.0 (i.e., Fr = 1), and Rdωi

is independent of ωi,
the “blurred” normal n(xo) can then be expressed as

n ∼ Rd ∗ n. (3)

This suggests that the “sharp” normal field n can be re-
covered by “deblurring” n with Rd. However, directly de-
blurring the normal field n is difficult due to the unit-length
constraint on both n and n. Furthermore, the index of re-
fraction is unlikely to be 1.0, and the shape of the diffuse
BSSRDFRd depends on α′ and ld, which are unknown. In-
stead of directly working on the normal field, we propose to
work on the observed radiance L. We will employ a blind
deconvolution approach to recover both the sharp normal
field as well as the reduced albedo α′ and mean free path ld
of the translucent material.
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3.2. Example

Before developing our algorithm, we first consider the
following example to gain further intuitive insight. Con-
sider the limit case of a flat surface without surface varia-
tion, i.e., n(xi) = n, and η = 1.0. In this case Eq. (2)
reduces to:

L′ωi
= Iωi

∫
A

Rdωi
dxi. (4)

It trivially follows that n = n. Note, however, that Iωi
is

equivalent to the surface reflectance of a Lambertian surface
with unit albedo. Thus, when computing the surface nor-
mal from the observed radiance values, the normalization
length of the computed normal equals

∫
A
Rdωi

dxi, the total
diffuse reflectance. However, this total diffuse reflectance
only depends on the reduced albedo α′, and is independent
of the diffuse mean free path ld [16]. This illustrates that it
is possible to estimate the reduced albedo from typical pho-
tometric stereo observations of a homogeneous translucent
material (i.e., it is a function of the normalization length).
Furthermore, it also illustrates that without surface varia-
tions, we cannot infer the diffuse mean free path ld.

Now consider the case where there is sufficient surface
variation, and the reduced albedo α′ is known. Deblurring
with an incorrect kernel (i.e., incorrect mean free path ld,
but correct α′) results in spatially varying artifacts such as
ringing. Consequently, even though the reduced albedo is
correct, the normalization of estimated normals will also
vary spatially, and deviate from the ideal unit length.

The above intuitive analysis shows that the normaliza-
tion length of the computed normals is indicative of the ac-
curacy of the estimated reduced albedo α′ and mean free
path ld. However, we found this normalization length to be
very sensitive to calibration inaccuracies and measurement
noise. Instead of directly relying on this cue, we will follow
an inverse rendering approach to estimate both the sharp
surface normals as well as the BSSRDF parameters.

3.3. Algorithm

To estimate BSSRDF parameters and sharp surface nor-
mals, we search for the reduced albedo α′ and mean free
path ld that best explain the observations. We formulate
this as a non-linear optimization in α′ and ld (using the
method of Hooke and Jeeves [15] that does not rely on
derivatives and thus is less sensitive to measurement noise).
In each optimization step, we first remove the effects of the
outgoing Fresnel transmission from the observed radiance
(Algorithm 1, line 2). Next, we deconvolve each of the
radiance images with the proposed BSSRDF kernel (line
3). We model the BSSRDF kernel using the photon beam
model [12], and employ a preconditioned conjugate gradi-
ent method for computing the deconvolution (i.e., the im-
ages are stacked in a vector, and the convolution with Rd
is explicitly written as multiplication with a square matrix).

Algorithm 1 Fitness of a proposed BSSRDF (α′ and ld)
given observations under directional lighting.

1: function FITNESS(α′(k), ld
(k), n(k−1), e(k−1),

{Lωi
}ωi

, η)
2: L′ωi

= Lωi
/Fr(η, (n

(k−1) · ωo)
3: Iωi

= L′ωi
∗−1 Rdωi

(α′
(k)
, ld

(k))
4: n = PhotometricStereo({Iωi

}ωi
, η)

5: Compute Lωi
using Eq. (1) and n

6: e =
∑
ωi
||Lωi

− Lωi
||2

7: if e < e(k−1) then
8: n(k) ← n
9: e(k) ← e

10: else
11: n(k) ← n(k−1)

12: e(k) ← e(k−1)

13: end if
14: return e
15: end function

Given the deblurred irradiance values, we estimate (normal-
ized) surface normals (line 4). To account for incoming
Fresnel transmission, we formulate this as a non-linear opti-
mization using again the method of Hooke and Jeeves [15].
Next, using these estimated surface normals, we regener-
ate the observed radiance images by evaluating Eq. (1) (line
5). The fitness of the proposed BSSRDF parameters is then
evaluated by the RMS error of the regenerated radiance im-
ages and the observed radiance images (line 6). Note, that
the first step (removal of the outgoing Fresnel transmission)
requires knowledge of the unknown surface normals. We
circumvent this problem by keeping track of the best-so-
far estimated normals (lines 7-13), and initialize it with the
“blurred” normals.
Validation We validated the proposed deconvolution ap-
proach on synthetic datasets. Figure 1 shows one such
result. We simulated the acquisition using Eq. (1), with
η = 1.3, α′ = 0.999, and ld = 0.436, which correspond to
the properties of apple [16]. We distributed 3 light sources
on a 45 degree cone around the virtual camera. As can be
seen, our method is capable of recovering the original nor-
mal maps, as well as the BSSRDF parameters.

In addition, we validated that the error landscape exhibits
a single global minimum by plotting the errors obtained
from a systematic parameter scan (Figure 2). In general, the
error landscape exhibits a long and narrow valley in (α′, ld)
space, being narrow and steepest in terms of reduced albedo
α′. While measurement noise can affect the location of the
global minimum in the error landscape, its effect is greatly
reduced by the ’reblurring’ step in our method (step (5) in
Algorithm 1). Consequently, we found that we can still ob-
tain good estimates of α′ and ld in the presence of moderate
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DeblurredGround TruthBlurred

Error: 3.1 degrees Error: 0.0 degrees

Figure 1. Inset: false color encoding exemplar. Left: naively ap-
plying photometric stereo on a (simulated) translucent material
yields blurred surface normal estimates. Middle: ground truth
normals. Right: the surface normals estimated by the proposed
method are a closer match to the ground truth normals (note the
recovery of the fine details in the ’flat’ areas). Furthermore, the
estimated BSSRDF parameters (α′ = 0.998689, ld = 0.436094)
are an almost exact match to the ground truth BSSRDF parameters
(α′ = 0.998691, ld = 0.436110).

amounts of measurement noise. Note that noise amplifi-
cation during deblurring can potentially impact the quality
of the estimated sharp normals. The effects of noise am-
plification can be reduced by adding an appropriate noise-
suppression term to the deconvolution algorithm. However,
we did not explore this option.

We found that our method is not sensitive to the initial
values of α′ and ld, and use the randomly chosen α′ =
0.9987 and ld = 0.4342 as starting point in our implemen-
tation.
Experimental Validation Our capture setup consists of a
single DSLR camera (Nikon D700) with 4 synchronized
flashes mounted approximately 1m from the sample. We
currently capture 4 photographs (1 per flash), one more
than strictly necessary, for added robustness – we validated
that our method also works well with the minimum num-
ber of measurements. We cross-polarize the light sources
and the camera to cancel out direct surface reflections and
single scattering. To radiometrically calibrate our setup,
we capture RAW images of a planar Spectralon sample (an
ideal diffuse reflector with +99% reflectivity) and normal-
ize these images by the foreshortening of the central pixel.
During acquisition, each captured image of a globally pla-
nar translucent object is then divided by the respective nor-
malized Spectralon image. This simple calibration proce-
dure ensures that camera and light source vignetting, as well
as differences in light source power, are compensated. We
assume an index of refraction of 1.3 which is a good ap-
proximation for most organic materials – Moore et al. [21]
showed that the differences in impact on photometric stereo
for translucent materials is small when η = [1.2, 1.5].

We validate our method by comparing both surface nor-
mals as well as BSSRDF parameters with ground truth esti-
mates. We selected soap as a ground truth material as it can

α′

ld0.550.450.350.15 0.25 0.65

0.999

0.998

0.997

0.996

0.995 0.0003

0.0006

0.0009

0.0012

0.0015
Error

Figure 2. Typical error landscape of the surface normals computed
from deblurred (simulated) measurements. The global minimum
(highlighted) occurs at α′ = 0.9987, and ld = 0.436, and is equal
to the simulation parameters.

be easily melted and cast into a desired shape. We place
an opaque target surface normal sample in a container and
submerge it with molten soap. After letting the soap so-
lidify, we carefully remove the mold, yielding a translucent
material with the desired (inverse) surface variation. We ob-
tain the ground truth BSSRDF parameters by fitting them to
the observations of illuminating a single surface point (with
a cross-polarized projector). Figure 3 clearly illustrates the
effects of translucency on the accuracy of the estimated pho-
tometric surface normals (ground truth (a) versus blurred (b-
d)). The different degrees of blurring per color channel are
due to the wavelength dependence of BSSRDF parameters
α′ and ld. The surface normals, per color channel, obtained
with our method (f-h) are closer to the the ground truth
normals. Furthermore, the estimated BSSRDF parameters
(α′ = [0.999, 0.991, 0.991] and ld = [0.103, 0.269, 0.239],
plotted in green in (j-l)) are a close match to the estimated
ground truth parameters (α′ = [0.999, 0.992, 0.987] and
ld = [0.286, 0.221, 0.207], plotted in red in (j-l)).

3.4. Multiple Color Channels

Ideally, the above blind deconvolution algorithm should
result in identical normal maps for each color channel.
However, in practice, the different normal maps will differ
slightly, due to measurement noise and/or deviations from
the theoretical BSSRDF models.

The above algorithm can be easily extended to a joint
multi-channel blind deconvolution. We alter the non-linear
optimization to search over all color channels’ BSSRDF pa-
rameters, and change the deconvolution (step (3) in Algo-
rithm 1) to deconvolve all channels simultaneously. The
latter is achieved by stacking all the L′ωi

of each color chan-
nel in a vector, and concatenating the n × n Rdωi

matrices
into a single n×(n×#channels) matrix. We again employ
preconditioned conjugate gradients (with normal equations)
to solve for the sharp normals in a least squares sense.

However, the above non-linear optimization now needs
to perform a search in a #channels× 2 dimensional space
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Figure 3. (a) Ground truth surface normals captured directly from the mold used to cast the normal variation on the pink soap material (i).
(b-d) Naively applying photometric stereo directly on the observations yields blurred normals. (f-g) Result from our method computed
on each channel seperately. (e) Result from joint optimization on all color channels simultaneously. (j-l) Corresponding ground truth and
recovered BSSRDF profiles.

(as opposed to a 2D space), which has a slower convergence
rate. To speed up computations, we first perform the search
on each channel separately, and use the obtained estimates
as a start point for the full joint optimization.

3.5. Results & Discussion

Implementation We implemented our algorithm on the
GPU in CUDA. Nevertheless, due to the large size of the
kernels, the computational cost is still high. We there-
fore optimize for the BSSRDF parameters on a scaled-down
subset, and deconvolve the full image with the obtained pa-
rameters. In general we first downsample the photographs
to approximately 1.6 pixels/mm, and then crop an 80 × 80
pixel area. Computing the BSSRDF parameters for a sin-
gle color channel takes 1 to 2 hours on an Intel E5630 at
2.53Ghz with an NVidia GTX 660 Ti, and 12 hours for a
joint three-color channel optimization.
Results Figure 3-(e) shows the jointly optimized surface
normal map of the fabricated soap example. The respective
BSSRDF parameters, shown in blue in Figure 3-(j-l), are
α′ = [0.999, 0.991, 0.991] and ld = [0.333, 0.284, 0.235],
which are closer to the ground truth parameters (α′ =
[0.999, 0.992, 0.987] and ld = [0.288, 0.221, 0.207]) than

the results of optimizing each channel separately.
Due to the high frequency normal variations, it is dif-

ficult to make a per-pixel RMSE comparison between the
ground truth (i.e., mold) and the estimated normals. Fur-
thermore, the estimates of the “ground truth” BSSRDF pa-
rameters are potentially affected by inaccuracies in the PSF
estimate of the projector, and due to differences in spectrum
between the flashes used for photometric stereo and the pro-
jector used for estimating the ground truth parameters. Nev-
ertheless, both are still good indicators of the reconstruction
quality (albeit not absolute measures).

We tested our blind deconvolution method on several ho-
mogeneous translucent materials (all assuming η = 1.3).
Table 1 summarizes our results in terms of estimated BSS-
RDF parameters. In general, the error on diffuse mean
free path is larger than the error on reduced albedo. How-
ever, in terms of BSSRDF shape, the differences are small.
Figures 4,5, and 6 show additional results for white soap,
cheddar cheese, and potato (albeit without ground truth nor-
mals).
Limitations The frequency spectrum of BSSRDF profiles
contain very few zeros, indicating that we should be able
to cover most of the surface details. However, as is typical

4325



Jo
in

tO
pt

im
iz

at
io

n
Ph

ot
og

ra
ph

Red Green Blue

B
lu

rr
ed

Si
ng

le
C

ha
nn

el
O

pt
im

iz
at

io
n

B
SS

R
D

F
Pr

ofi
le

s

(e)

(i)

(j) (k) (l)

(b) (c) (d)

(f) (g) (h)

0 4

Single Channel Optimization
Joint Optimization

Ground Truth

0
1e-06

1e-05

0.001

0.01

0.0001

4 40

Figure 4. Result for a white soap material (i). For this example, no ground truth normals are available. (b-d) Naively applying photometric
stereo directly on the observations yields blurred normals. (f-g) Result from our method computed on each channel seperately. (e) Result
from joint optimization on all color channels simultaneously. (j-l) Corresponding ground truth and recovered BSSRDF profiles.

Table 1. BSSRDF parameters estimated using the joint multi-
channel deconvolution versus ground truth parameters.

Material Parameter R G B

Pink Soap

est. α′ 0.999 0.991 0.991
g.t. α′ 0.999 0.992 0.987
est. ld 0.333 0.284 0.235
g.t. ld 0.288 0.221 0.207

White Soap

est. α′ 0.999 0.998 0.991
g.t. α′ 0.999 0.999 0.998
est. ld 0.302 0.223 0.156
g.t. ld 0.309 0.219 0.179

Cheddar Cheese

est. α′ 0.999 0.968 0.790
g.t. α′ 0.999 0.977 0.875
est. ld 0.329 0.289 0.168
g.t. ld 0.431 0.414 0.305

Potato

est. α′ 0.967 0.997 0.967
g.t. α′ 0.999 0.996 0.956
est. ld 1.027 1.057 1.037
g.t. ld 1.029 0.947 1.025

for deconvolution, our method suffers from noisy amplifica-
tion, and thus the accuracy of the recovered normals greatly
depends on the measurement quality of the blurred signal.
Using the joint multi-channel optimization can help in reg-

ularizing the estimation of BSSRDF parameters from noisy
color channels. However, in some cases the noise domi-
nates the signal from the other color channels, resulting in a
degradation of the estimated normals and BSSRDF parame-
ters. We currently omit such noisy channels manually from
the joint optimization. However, it would be interesting to
investigate automatic weighting schemes and/or noise sup-
pression to handle such cases.

Our current implementation is limited to globally planar
surfaces only. Surface curvature can deform the kernel, ef-
fectively yielding a spatially varying kernel that depends on
the “deblurred” surface normal. However, we found that we
still obtain good estimates for slightly curved surfaces (e.g.,
the potato example in Fig. 6 is slightly curved). Similarly,
our method also assumes a homogeneous translucent mate-
rial. Subsurface light transport in heterogeneous translucent
materials is difficult to describe by simple analytical mod-
els, requiring a full data-driven scattering model.

Finally, we currently rely on cross-polarization to isolate
the reflectance from multiple scattering. However, for cer-
tain materials, such as marble, this separation is not perfect
at thin structures (e.g., close to edges), resulting in artifacts
in the separation.
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Figure 5. Result for Cheddar Cheese (i). For this example, no ground truth normals are available. (b-d) Naively applying photometric
stereo directly on the observations yields blurred normals. (f-g) Result from our method computed on each channel seperately. (e) Result
from joint optimization on all color channels simultaneously. (j-l) Corresponding ground truth and recovered BSSRDF profiles.

4. Conclusion

We proposed a novel photometric stereo approach for
estimating surface normals and scattering parameters of
translucent objects based on blind deconvolution and in-
verse rendering, and demonstrated our method on a variety
of translucent materials. For future work, we would like to
incorporate advanced deconvolution algorithms to improve
computation time and quality. In addition, we would like to
extend our method to curved surfaces.
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