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Summary

Quantifying the value of explanations in a human-in-the-loop (HITL) system is
difficult. Previous methods either measure explanation-specific values that do not
correspond to user tasks and needs or poll users on how useful they find the explana-
tions to be. In this work, we quantify how much explanations help the user through a
utility-based paradigm that measures change in task performance when using expla-
nations versus not. Our chosen task is content-based image retrieval (CBIR), which
has well-established baselines and performance metrics independent of explain-
ability. We extend an existing HITL image retrieval system that incorporates user
feedback with similarity-based saliency maps (SBSM) that indicate to the user which
parts of the retrieved images are most similar to the query image. The system helps
the user understand what it is paying attention to through saliency maps, and the user
helps the system understand their goal through saliency-guided relevance feedback.
Using the MS-COCO dataset, a standard object detection and segmentation dataset,
we conducted extensive, crowd-sourced experiments validating that SBSM improves
interactive image retrieval. Although the performance increase is modest in the gen-
eral case, in more difficult cases such as cluttered scenes, using explanations yields
an 6.5% increase in accuracy. To the best of our knowledge, this is the first large-scale
user study showing that visual saliency map explanations improve performance on
a real-world, interactive task. Our utility-based evaluation paradigm is general and
potentially applicable to any task for which explainability can be incorporated.
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1 INTRODUCTION

Deep-learning based systems can perform at or above human levels on some tasks (e.g. image recognition1), but the realization
that such systems are vulnerable to visually-imperceptible adversarial attacks2 has created a “trust gap” between these systems
and their potential users3,4. One approach to bridging this gap is the concept of explainable AI (XAI)5,6 in which systems
provide not just an answer but an explanation of why the system has chosen that answer. The question arises as to how to
evaluate an explanation;7 argues for evaluating explanations along a number of axes which place the explanation in an ecosystem
including the system, the user, the explanation, and (crucially) the task the user is trying to perform. An explanation’s utility
exists independently from the system’s accuracy; a user may prefer a less-accurate system if they understand the circumstances
for when the system may be wrong to a more-accurate system whose errors are incomprehensible.
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In this work, we present a utility-based evaluation for explanations in an image retrieval system (a.k.a reverse image search).
Building upon the method proposed in8, our base system is an open-source, human-in-the-loop (HITL) image retrieval system
which takes a single query image as input, returns a set of results, and then solicits relevance feedback from the user. The user
indicates which results are or are not relevant to the query; this feedback is then used to train a lightweight classifier which re-
ranks the results so that higher-ranked results should be more relevant. In the base system, the user has no way of knowing why
any particular result is returned and considered relevant. In the XAI-enabled variant, the user is presented with saliency maps
highlighting which regions in a result match most closely with the query; our hypothesis is that these explanations allow the user
to more efficiently guide the system towards the object of interest and thus achieve a higher retrieval accuracy than without XAI
(Figure 1). Saliencymaps display additional information to the user, allowing them to provide more informed relevance feedback
to the system. For example, a user may choose to not provide positive feedback on an example in which the saliency map is not
well localized on the object of interest. This should help create a more generalizable image retrieval system which is trained with
better feedback examples. We utilize similarity-based saliency maps (SBSM)8 to visualize which areas in an image the content-
based image retrieval (CBIR) system uses when retrieving and ranking results; the SBSM thus serves to “explain” the CBIR
system’s decisions to the user. We have implemented SBSMs in our open-source Social Media Query Toolkit (SMQTK)9, and
have conducted user studies to demonstrate that SBSMs allow the user to more efficiently retrieve images.
Our contributions include:
• To the best of our knowledge, the first large-scale, quantifiable improvement from using visual saliency maps on a

real-world task. We conducted a crowd-sourced human study involving 476 Amazon Mechanical Turk subjects, each
performing two rounds of image retrieval from a pool of 160 queries drawn from 24 object classes against an archive
of approximately 123K MS-COCO images. Although the performance increase is modest in the general case, in more
difficult cases such as cluttered scenes, using explanations yields an 6.5% increase in accuracy.

• A user study protocol to quantify the improvement in image retrieval performance with the help of explanations on a high-
level machine learning task. The most common methods for evaluating visual explanations compare saliency maps with
ground truth annotations, which does not actually measure how explanations improve task performance. We believe this
utility-based paradigm is general and could easily be adapted to other kinds of explanations and tasks. For example, this
approach could be extended to other image understanding tasks, such as image classification or object detection.

• Quantification of target data distribution parameters that lead to the greatest improvement in performance.
• Direct quantitative measurement of human trust in an explanation system based on a series of post-task questionnaires.
Our paper is structured as follows: first, we discuss related work (Section 2). Next, we review the similarity-based saliency

map algorithm (Section 3) and provide a detailed description of the proposed human study evaluation protocol and quantitative
metrics (Section 4). Finally, we describe our findings obtained after analyzing results from our user study (Section 5).

2 RELATEDWORK

Interpretable machine learning is a central topic of research, with interpretability playing an important role in high-stakes sit-
uations especially. However, research in this area has been largely limited to either better estimates of the ‘goodness’ of an
explanation as a standalone component or algorithms to generate better explanations. In contrast, the focus of our work lies in
developing a novel framework for measuring the effectiveness of explanations.10 makes several important arguments regarding
the interpretability of a model and conclude by highlighting the need for a fixed objective evaluation to term a model truly inter-
pretable.11 asked equally important questions and discussed material regarding the trade-offs present in successfully explaining
a model’s decision to an end-user. The work in12, while acknowledging the importance of the understandability of explanations,
also highlights the lack of a strong evaluation setup to evaluate the interpretability of models. Prior conceptual work on inter-
pretability10,11,12 concludes that explanations need to agree with human intuition and there is a lack of a commonly accepted
quantitative evaluation standard.
Interpretability of models can be categorized into either white-box or black-box approaches. White-box approaches are lim-

ited to a narrow set of models and require access to internal elements of the model, while black-box approaches require only
knowledge of the model inputs and outputs, and thus can explain any model.13 introduced interpretability for linear models
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while14,15,16 and17 did the same for deep networks. Local Interpretable Model Agnostic Explanations (LIME)18 proposes to
draw random samples around the instance for an explanation by fitting an approximate linear decision model. Random Input
Sampling for Explanations (RISE)19 was proposed as an improvement over LIME for generating black-box model explanations.
More recently, Iterative and Adaptive Sampling20 introduced an iterative method to sample around important regions in the
image. With substantial research quantifying the effects of using one method over another21, the scope of the present paper is
not to decide which method is better, but rather to arrive at an evaluation strategy that is fair across all methods.
Evaluation protocols such as22,23 are qualitative or task-specific, limiting reproducibility. Previous works for visual saliency

have used metrics such as computational efficiency and Intersection over Union (IoU) to measure the alignment of saliency
maps with object ground truth annotations, even though these are not directly related to interpretability.24,25 proposed alternative
solutions to the interpretability problem include asking the participants to guess the model decision based on the explanation for
an instance and checking the agreement between the predicted and actual model decision;26 measured the speed and accuracy
with which the human can predict themodel’s decisions. These studies are quantitative but lack reproducibility due to the absence
of a controlled environment and access to skilled participants with subject-specific knowledge. More recently,27 proposed a
study that operates under a crowdsourcing scenario with participants that are not task experts. The contribution of our work
is to quantitatively and directly measure the effects of using explanations in an HITL system, in which the user interacts with
the system to provide relevance feedback, yielding higher performance than a standard image retrieval model. An additional
challenge in our work relative to27 is that our system’s underlying retrieval model dynamically evolves in response to the user’s
feedback. Our work also differs because we tie interpretability of a model to task performance (to wit, retrieval accuracy),
human-AI interaction and finally, computational efficiency. For a given method of explanation generation, our evaluation setup
can identify the subsets of data that will benefit the most from having visual explanations as well.

3 SIMILARITY-BASED SALIENCY MAPS

Similarity-based saliency maps (SBSM) are a variant of pertubation-based saliency maps, which can be used to indicate the
importance of image regions against some criteria 28,29,30,31. In the context of content-based image retrieval (CBIR), a saliency
map should indicate how a particular region on the retrieved image impacts visual similarity with a query image. However,
classification-based saliency maps indicate how a particular image region impacts classification probability, which is not appli-
cable to image similarity. Our SBSM instead measures how image regions in a result image (when compared to a query image)
contribute to the distance metric used by the CBIR system when computing image similarity. Most similiar to our work are rep-
resenter point selection32 and explainable additive models33, which have been used for image classification tasks but have not
yet been applied to image retrieval. Representer point selection33 produces a set of positive and negative images for a given pre-
diction, which can be used for interpretability purposes. In our study, positive and negative images are actually used to train a
classifier in a human-in-the-loop, interactive image retrieval paradigm. Explainable additive models32 start with a base network
and train an interpretable additive explainer via model distillation. In contrast, the SBSM algorithm proposed here is purely
black-box and only requires access to the inputs and outputs of the base network.
We perturb a retrieved image by applying a binary mask to block out a region of interest. Inside the binary mask, the region

of interest has value 0; all other pixels have value 1. In general, the region of interest can be of any shape. In our setup, we
simply use a b x b square block. By sliding the square block over the retrieval image with a stride of s, we are able to show the
importance of the blocked areas on image similarity. In order to leverage parallel computing resources (GPUs), we generate a
set of binary masksM , each of which represents a state of sliding the square block.
Mathematically, given a query imageQ, a retrieval imageA and a binary maskmi ∈ M , the importance of the region blocked

out by mi is estimated as follows:

K(Q,A,mi) = max(D′ −D, 0)(I − mi), (1)
D′ = ‖f (Q), f (A ⊙ mi)‖, (2)
D = ‖(f (Q), f (A)‖, (3)

where, f ∶ I → ℝn is a black-box model, which maps a input image I to a n dimensional vector; ⊙ denotes element-wise
multiplication; ‖v⃗1, v⃗2‖ is the similarity between the two vectors v⃗1 and v⃗2 based on a user-defined distance metric (e.g. L2
distance); I is a matrix with all entries are 1 and the same shape as mi. Given a binary mask set M with N binary masks, the
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SBSM is calculated as:
SBSM(Q,A,M) =

N
∑

i
K(Q,A,mi)⊙

1
∑N

i (I − mi)
. (4)

Intuitively, Eq. 4 says that when a region is overlapped by multiple masks, the mean value is used to express the importance
of the region. An overview of the proposed SBSM approach is illustrated in Figure 2.

4 EVALUATION PROTOCOL

Identifying conditions under which an image retrieval system excels requires the use of a wide variety of images from a large
distribution of natural image to ensure stable and reproducible outcomes. In this paper, we consider the MS-COCO34 dataset
because it has a large range of possible queries per class and a high number of samples per class.
User evaluation protocol. The archive consisted of approximately 123K images from the 2014 and 2017 editions of the MS-

COCO34 dataset. Our query set is 24 object types or classes represented by a total of 160 images. The query classes were selected
based on pilot evaluation results indicating greater XAI benefit in images with higher category diversity. The 160 images were
sampled into 148 “task pair” image ID tuples; the first image was the without-XAI image; the second was the with-XAI image.
Task pairs were generated such that the same class was never presented as both with-XAI and without-XAI for a given user. We
structured our AMT jobs such that each experiment (or HIT, “Human Intelligence Task”) was performed by a different AMT
user ID. In the end, we were able to loop over each task pair at least three times, yielding a total of 476 data points. Human
studies conducted on AMT often mandate additional rigor to ensure the quality of the data. To uphold trust in the data, we used
the following criteria: tasks were only assigned to residents of either US or Canada, users had to have completed at least 1000
HITs prior to the study, and user had to have had an average hit approval rate above 97%.
The HIT for a task pair was: for each type (with- and without-XAI), find at least 12 instances of the class. To ensure proper

counterbalancing, the order of thewith-XAI andwithout-XAI conditions was random. The specific procedure was: read a tutorial;
perform the first image search task; answer a sub-task questionnaire; perform the second image search task; answer a sub-task
questionnaire, then answer a short final overall questionnaire. The sub-task questionnaires asked specific questions based on
the with- or without-XAI condition; the final overall questionnaire asked comparative questions. By comparing results obtained
based on the with-XAI and without-XAI conditions, we hope to identify query classes that benefit the most from explanations
in terms of performance and trust.
The basic task of our user evaluation is: Given a query image containing an object of a designated type, find 12 additional

instances of that object type in the archive.Note that the type label is provided for the user’s reference only; our underlying image
retrieval system that makes use of SMQTK remains wholly image-based. The with-XAI condition supplies an SBSMmap with
each result; the without-XAI condition has no SBSM map. The with-XAI state is shown in Figure 3. The specific hypothesis
is that the SBSM map “explains” the retrieval ranking by highlighting result regions which the retrieval system pays
attention to and that this explanation will help the user provide more efficient relevance feedback. The main performance
metric is the number of images containing the target type that have been retrieved at the end of the experiment.
Quantifiable Metrics. The user study conducted in this paper collects both user and query dependent metrics during image

retrieval. Under user-specific metrics, we ask users a wide variety of questions that try to identify the effectiveness of the system
and explanations. The purpose of these questions is to monitor human trust in the system’s retrieval ability across different
classes, queries, and instance sizes. Additionally, we also collect other system-level parameters like the number of refinements
taken to complete a task and finally the number of images adjudicated by different users on the same task.
The improvement in performance is calculated by comparing the number of positive samples found using the with-XAI and

without-XAI versions of the system. Similarly, we also aggregate task-specific parameters like the number of adjudications and
user trust to test whether there are improvements with XAI. We hypothesize that a higher level of interaction from the user
in the form of adjudications signifies a more significant deviation in model and user interpretation of the image. This kind of
analysis helps us to identify conditions under which the user and system benefited from explanations, conditions that did not
benefit from explanations, but helped the user understand the system better and finally conditions that are negatively impacted
by explanations.
To compute statistical significance of the reported results, we used a permutation or randomization test. More specifically, to

test the null hypothesis that the number of positive samples found is the same in the with-XAI and without-XAI conditions, we
randomly shuffled the labels associated with XAI condition and reassigned each data point to its new label. We did this while
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preserving the overall query distribution such that the number of data points for each query class was preserved (i.e. sampling
without replacement). For each permutation, we computed a new resampled XAI gain. Doing this multiple times builds a
distribution of resampled XAI gains, from which we can compute a p-value for the statistical significance of our observed XAI
gain. We calculated the permutation test using a total of N=10,000 randomizations of the original input data. We used an alpha
level of 0.1 for all statistical tests.

5 RESULTS

5.1 Improvement in human-AI performance
In this work, the benefit of explanations in the form of saliency maps is measured through a utility-based paradigm, e.g. by
computing the number of positive examples found in the with- and without-XAI conditions. If explanations help, we expect that
the number of positive examples found will be higher in the with- versus the without-XAI condition. We believe that saliency
maps can provide users additional information upon which they can base their relevance feedback decisions, which results in a
better and more generalizable image retrieval system that can be quantified by different metrics.
In brief, our results show that XAI benefits classes with high image class diversity or clutter. Our results are visualized in

Figure 4 for the 24 query classes. The X-axis is the ratio of the number of images found with-XAI to those found without-XAI.
The Y-axis is the average number of unique classes appearing in the archive for a given type; higher numbers indicate a more
“busy” or “confused” image. The diameter of the circles represents the average size of class instances in the archive; dining
tables (the largest) are about 40 times larger than spoons (the smallest.) The insight from Figure 4 is that when XAI benefits
an object class, that is, when the class appears to the right of X==1.0, these classes tend to be in more diverse images than
those which do not benefit from XAI. In other words, SBSM XAI helps find objects in busy images by highlighting the object of
interest. We also observed a slight XAI benefit for smaller objects. In contrast, our results also show that XAI does not benefit
(and may even hurt performance) on classes with very little clutter. In this case, XAI may not be required as objects are more
easily localizable even without the aid of saliency maps (and saliency maps incur additional information overhead that may not
be beneficial). We leave a more complete quantification of conditions under which XAI shows benefit for future work.
To facilitate analysis, we define a set of attributes based on the “Confuser” (Y-axis) and “Area” (bubble diameter) attributes

in Figure 4: A class is a member of Clutter if it is in the top 12 classes for “Confuser”, else it is Uncluttered; likewise, a class
is a member of Large if it is in the top 12 classes for area, else it is in Small. Using these attributes, the 24 query classes are
partitioned among the categories (CL, CS, UL, US) as follows:

• CL (Cluttered, Large): dining_table, microwave, oven, sink, toaster, vase
• CS (Cluttered, Small): book, chair, fork, knife, spoon, wine_glass
• UL (Uncluttered, Large): cake, keyboard, laptop, sandwich, tv, umbrella
• US (Uncluttered, Small): apple, backpack, carrot, clock, handbag, orange
The conclusion of Figure 4 can be restated as SBSM XAI benefits members of the Cluttered classes, and to a lesser degree, the

Small classes. For the Cluttered classes, users were able to find on average 1.2 more positive examples with XAI (18.9 vs. 17.7
positive examples per query image with and without XAI, respectively). For the Small classes, users were able to find on average
0.7 more positive examples with XAI (18.6 vs. 17.9 positive examples per query image with and without XAI, respectively).
This translates into an observed 6.5% gain from XAI for the Cluttered class groups (p=0.09, permutation test) and a smaller
3.9% increase in XAI benefit for the Small classes (p=0.18, permutation test). To ensure that the quantitative improvement is not
due to simply having more user study query examples in a given group, Table 1, for the qD attribute, shows the distribution of
queries according to these attributes for XAI benefit across with- and without-XAI case. The ratio attribute shows the relative
prevalence of the CL, CS, UL, and US groups between the with- and without-XAI conditions; we normalize by these ratios to
compensate for having more user study query examples for one group compared to another.

5.2 Level of human-AI interaction
The human-AI interaction is in the form of positive and negative adjudications to the system that help influence the retrieval
results. In this section, we compare the number of adjudications required across both the with-XAI and without-XAI system for
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the same query image for different users. Table 2, attribute nA, shows the distribution of human adjudications for the conditions.
For the Small classes, users made on average 1.7 more adjudications with XAI (32.9 vs. 31.2 adjudications per query image with
and without XAI, respectively). For theCluttered classes, users made on average 1.7 more adjudications with XAI (39.6 vs. 37.9
adjudications per query image with and without XAI, respectively). This translates into Small classes showing a 4.4% increase
in adjudications and the Cluttered classes showing adjudication gains of 5.5%. Finally, for the Cluttered classes, users took on
average 148.2 seconds longer with XAI (589.1 vs. 440.9 seconds per query image with and without XAI, respectively) and for
the Small classes, users took on average 134.4 seconds longer with XAI (625.7 vs. 491.2 seconds per query image with and
without XAI, respectively). As a result, we observed a 33.6% and 27.3% increase in time taken in seconds (T) to complete the
task for the cluttered and small classes, respectively. These results suggest that while XAI helped to increase the overall number
of positive examples found, it also slightly increased the number of adjudications required and the time taken to complete the
task.

5.3 Human trust in system
To determine human trust in the system, we asked the users several questions about their experience using the system. We
chose to use a self-reporting questionnaire due to ease of training and compatibility with our workflow which allowed us to
run the user study remotely on AWS. We acknowledge that data collected through such questionnaires could potentially be
biased, and suggest that task-based evaluations could be used as an alternative measure of the ease-of-use or understandability
of explanations (which is left as an area for future work).
Questionnaire responses.Users were presented with questions at three points during the experiment: questionnaires tailored

to the with- and without-XAI conditions after the individual tasks, and a short final questionnaire. Questions were on a 6-point
Likert scale, 1 =“strongly disagree", 6=“strongly agree". We made the following observations:

• XAI helps users give feedback. 60% agreed at some level that “Overall, I feel saliency maps helped me give better
feedback."

• XAI helps users understand. 83% agreed at some level, with 56% agreeing or strongly agreeing, that “Saliency map
helped me understand how the system “thinks."

• XAI improves ease-of-use. 62% agreed at some level, with 38% agreeing or strongly agreeing, that “Saliency maps made
the system easier to use."

• No clear signal on preference for saliency maps. 58% agreed at some level that they would “prefer to do [the task] with
saliency maps rather than without"; however, 60% also agreed at some level with the opposite question that they would
“prefer to do [the task] without saliency maps rather than with."

• Responder confidence. 95% agreed or strongly agreed that they understood the questions.
Figure 5 shows a detailed breakdown of user responses for their preference towards an XAI and non-XAI system to perform

image retrieval. More directly, we collate answers to the statement, “If given the option to redo the task, I would prefer to do
it with saliency maps rather than without saliency maps". We did not observe any clear trends when comparing the qualitative
survey results shown in Figure 5 with the quantitative results reported in Table 2. For example, on the cluttered image classes
we did not necessarily observe a stronger preference for using saliency maps. Please note the data points shown in Figure 5 for
comparing preference to the with- and without-XAI conditions are obtained from different sub-populations of our user study
group assuming they are equal and balanced in all other aspects. In other words, the same user does not see both the XAI and
the no-XAI condition for the same query class (to avoid potential bias due to pre-exposure to the same query class), therefore
we present user preferences across both with and without-XAI.

6 CONCLUSION

We evaluated, both quantitatively and qualitatively, how augmenting an image retrieval system with XAI in the form of saliency
maps improves the human-in-the-loop task of finding images containing a given object type from the archive. We tasked 476
users to search for different objects, once with the XAI condition and once without. Queries were drawn from a pool of 24 object
types; the archive contained approximately 123K images fromMS-COCO 34. We found that the user was able to find 6.5% more
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instances in the case when the query object occurs in cluttered images, and 3.9% more instances in the case when the query
object is relatively small. This suggests a potential benefit to XAI in cluttered image scenes. Users also provided 5.5% more
feedback in the cluttered-image case, and 4.4%more feedback in the small-object case. The XAI user feedback via questionnaires
indicates that the users feel XAI helps them give more relevant feedback and increases ease-of-use and understanding of how
the system operates. We believe that the utility-based paradigm for evaluating the effectiveness of explanations introduced here
is also broadly applicable to other human-machine teaming tasks where explainability can be incorporated, which we leave as
an area of future work.
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FIGURE1 Pipeline of the human-in-the-loop image retrieval system that searches for relevant images in an archive given a query
image. An initial set of ranked results is retrieved based on distance to the query image features extracted from a convolutional
neural network. The user then provides positive and negative feedback on the relevance of the returned results. Explanations
in the form of saliency maps indicating image regions used by the system are also be provided to the user in the with-XAI
condition. This feedback is used to train a lightweight classifier that re-ranks the results over multiple iterations.
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FIGURE 2 Similarity-based saliency map (SBSM) generation. Result image R is masked by binary mask mi and run through
feature extractor f ; the distance between this new feature vector and the original query/result distance is used to compute how
relevant masked region mi is in the final SBSM.
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FIGURE 3 Proposed user interface for evaluating the effectiveness of visual explanations. The user performs image retrieval
once with XAI and once without. This figure shows the with-XAI condition for retrieving cows; the without-XAI condition
would have a different query class and no explanations. Top, task instructions; left; the user has already found 9 cows; right,
results marked as “not cows”; center: unadjudicated results list with corresponding saliency maps.
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FIGURE 4 Class-wise image retrieval performance improvement with XAI. The X-axis is the ratio of number of images con-
taining the class found with-XAI vs. without-XAI; values greater than 1.0 indicate an XAI benefit. The Y-axis is the average
number of classes appearing in images in the archive; higher numbers indicate the given class appears with more classes. The
relative diameter of each circle indicates the average size of the class in images in the archive.
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FIGURE 5 Results for improvement in human trust with XAI; the statement asked was "If given the option to redo the task, I
would prefer to do it with saliency maps rather than without saliency maps." Survey responses are normalized from a scale
of 0 to 1: strongly diagree (0.0), disagree (0.2), slightly disagree (0.4), slightly agree (0.6), agree (0.8), and strongly agree (1.0).
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with-XAI no-XAI
attr clutter size(L) size(S) size(L) size(S)
qD-raw C 111 141 138 150

U 101 123 89 99
qD C 0.23 0.30 0.29 0.32

U 0.21 0.26 0.19 0.21
ratio C 0.80 0.94

U 1.13 1.24
TABLE 1 Query distribution for the CS, CL, US, UL superclasses as raw counts (qD-raw) and fractions (qD). ratio shows the
relative distribution of with-XAI to no-XAI.
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ratio XAI/no-XAI XAI gain for
attr clutter size(L) size(S) Cluttered (C) Small (S)

nP C 1.01 1.09 6.5% 3.9%
U 1.00 0.99

nA C 1.27 0.91 5.5% 4.4%
U 1.05 1.16

T C 1.48 1.22 33.6% 27.3%
U 1.33 1.30

TABLE 2 Results of with / without-XAI conditions for the CS, CL, US, UL superclasses across the attributes of number of
positives retrieved (nP), number of adjudications (nA), and time taken in seconds (T). Ratios are normalized using the ratio
attribute for the class from Table 1. The percent XAI gain for the cluttered and small query classes is shown in the last two
columns, respectively.
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