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Abstract. Existing neural networks for computer vision tasks are vul-
nerable to adversarial attacks: adding imperceptible perturbations to the
input images can fool these models to make a false prediction on an im-
age that was correctly predicted without the perturbation. Various de-
fense methods have proposed image-to-image mapping methods, either
including these perturbations in the training process or removing them
in a preprocessing step. In doing so, existing methods often ignore that
the natural RGB images in today’s datasets are not captured but, in
fact, recovered from RAW color filter array captures that are subject to
various degradations in the capture. In this work, we exploit this RAW
data distribution as an empirical prior for adversarial defense. Specifi-
cally, we proposed a model-agnostic adversarial defensive method, which
maps the input RGB images to Bayer RAW space and back to output
RGB using a learned camera image signal processing (ISP) pipeline to
eliminate potential adversarial patterns. The proposed method acts as
an off-the-shelf preprocessing module and, unlike model-specific adver-
sarial training methods, does not require adversarial images to train. As
a result, the method generalizes to unseen tasks without additional re-
training. Experiments on large-scale datasets (e.g., ImageNet, COCO)
for different vision tasks (e.g., classification, semantic segmentation, ob-
ject detection) validate that the method significantly outperforms exist-
ing methods across task domains.
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1 Introduction

The most successful methods for a broad range of tasks in computer vision rely
on deep neural networks [11, 30, 31, 35, 91] (DNNs), including classification, de-
tection, segmentation, scene understanding, scene reconstruction and generative
tasks. Although we rely on the predictions of DNNs in safety-critical applica-
tions in robotics, self-driving vehicles, medical diagnostics, and video security,
existing networks have been shown to be vulnerable to adversarial attacks [74]:
small perturbations to images that are imperceptible to the human vision sys-
tem to images can deceive DNNs to make incorrect predictions [52,56,63,73,78].
As such, defending against adversarial attacks [5, 51, 52, 60, 86] can help resolve
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Fig. 1: Existing defense approaches
learn an RGB-to-RGB projection
from an adversarial distribution
(Y ′) to its natural RGB distribu-
tion (Y ): T : Y ′ → Y . In contrast,
our approach learns a mapping via
the intermediate natural RAW dis-
tribution (X), which is achieved by
utilizing three specially designed
operators: F : Y ′ → X, G : X →
Y , and S : X → Y .

failure cases in safety-critical applications and provide insights into the general-
ization capabilities of training procedures and network architectures.

Existing defense methods fall into two approaches: They either introduce
adversarial examples to the training dataset, resulting in new model weights,
or they transform the inputs, aiming to remove the adversarial pattern, before
feeding them into the unmodified target models. Specifically, the first line of
defense methods generates adversarial examples by iteratively training a target
model while finding and adding remaining adversarial images as training samples
in each iteration [82, 89] [24, 80, 82]. Although the set of successful adversarial
examples shrinks over time, iteratively generating them is extremely costly in
training time, and different adversarial images must be included for defending
against different attack algorithms. Moreover, the adversarial examples cannot
be stored once in a training set as they are model-specific and domain-specific,
meaning they must be re-generated when used for different models or on other
domains.

Defense methods that transform the input image aim to overcome the limita-
tions of adversarial training approaches. Considering adversarial perturbations
as noise, these methods “denoise” the inputs before feeding them into unmodi-
fied target models. The preprocessing module can either employ image-to-image
models such as auto-encoders or generative adversarial methods [38, 50, 67], or
they rely on conventional image-processing operations [16,19,27,46]. Compared
to adversarial training methods, these methods are model-agnostic and require
no adversarial images for training.

All methods in this approach have in common that they rely on RGB image
data as input and output. That is, they aim to recover the distribution of nat-
ural RGB images and project the adversarial image input to the closest match
in this distribution, using a direct image-to-image mapping network. As such,
existing methods often ignore the fact that images in natural image datasets
are the result of several processing steps applied to the raw captured images. In
particular, training image datasets are produced by interpolating sub-sampled,
color filtered (e.g., using Bayer filter) raw data, followed by a rich low-level pro-
cessing pipeline, including readout and photon noise denoising. As a result, the
raw per-pixel photon counts are heavily subsampled, degraded and processed in
an RGB image. We rely on the RAW data distribution, before becoming RGB
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images, as a prior in the proposed adversarial defense method, which is empiri-
cally described in large datasets of RAW camera captures. Specifically, instead
of directly learning a mapping between adversarially perturbed inputs RGBs
and “clean” output RGBs, we learn a mapping via the intermediate RAW color
filter array domain. In this mapping, we rely on learned ISP pipelines as low-
level camera image processing blocks to map from RAW to RGB. The resulting
method is entirely model-agnostic, requires no adversarial examples to train,
and acts as an off-the-shelf preprocessing module that can be transferred to any
task on any domain. We validate our method on large-scale datasets (ImageNet,
COCO) for different vision tasks (classification, semantic segmentation, object
detection), and also perform extensive ablation studies to assess the robustness
of the proposed method to various attack methods, model architecture choices,
and hyper-parameters choices.

Specifically, we make the following contributions:

• We propose, to the best of our knowledge, the first adversarial defense
method that exploits the natural distribution of RAW domain images.

• The proposed method avoids the tedious generation of adversarial training
images and can be used as an off-the-shelf preprocessing module for diverse
tasks.

• We provide a detailed analysis of how the natural RAW image distribution
helps defend against adversarial attacks, and we validate that the method
achieves state-of-the-art defense accuracy for input transformation defenses,
outperforming existing approaches.

We will provide all code, models, and instructions needed to reproduce the results
presented in this work.

2 Related Work

2.1 Camera Image Signal Processing (ISP) Pipeline

A camera image signal processing (ISP) pipeline converts RAW measurements
from a digital camera sensor to high-quality images suitable for human viewing
or downstream analytic tasks. To this end, a typical ISP pipeline encompasses a
sequence of modules [39] each addressing a portion of this image reconstruction
problem. In a hardware ISP, these modules are proprietary compute units, and
their behavior is unknown to the user. More importantly, the modules are not dif-
ferentiable [55,76]. Two lines of works leveraged deep-learning-based approaches
to cope with the significant drawback.

One line of the works directly replaced the hardware ISP with a deep-
learning-based model to target different application scenarios, such as low-light
enhancement [9, 10], super-resolution [87, 88, 92], smartphone camera enhance-
ment [15,34,68], and ISP replacement [45]. Nevertheless, the deep-learning-based
models used by these works contain a massive number of parameters and are
computationally expensive. Thus, their application is limited to off-line tasks.
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In contrast, another thread of works focused on searching for the best hard-
ware ISP hyperparameters for different downstream tasks, by leveraging deep-
learning-based approaches. Specifically, Tseng et al. [76] proposed differentiable
proxy functions to model arbitrary ISP pipelines and leveraged them to find the
best hardware ISP hyperparameters for different downstream tasks. Yu et al. [90]
proposed ReconfigISP, which uses different proxy functions for each module of
a hardware ISP instead of the whole ISP pipeline. Mosleh et al. [55] proposed
a hardware-in-the-loop method to optimize hyperparameters of a hardware ISP
directly.

2.2 Adversarial Attack Methods

Adversarial attacks have drawn significant attention from the deep-learning com-
munity. Based on the access level to target networks, adversarial attacks can be
broadly divided into white-box attacks and black-box attacks.

Among the white-box attack, one important stream is gradient-based at-
tacks [25, 42, 52]. These approaches generate adversarial samples based on the
gradient of the loss function with respect to input images. Another flavor of
attacks is based on solving optimization problems to generate adversarial sam-
ples [7, 73]. In the black-box setting, only benign images and their class labels
are given, meaning attackers can only query the target model. Black-box attacks
mainly leverage the free query and adversarial transferability to train substitute
models [32,59,61,71] or directly estimate the target model gradients [13,14,79] to
generate adversarial examples. To avoid the transferability assumption and the
overhead of gathering data to train a substitute model, several works proposed
local-search-based black-box attacks to generate adversarial samples directly in
the input domain [6, 44,57].

In the physical world, adversarial samples are captured by cameras as in-
puts to target networks, involving camera hardware ISPs and optical systems.
A variety of strategies have been developed to guard the effectiveness of the
adversarial patterns in the wild [3, 18, 22, 36]. These methods typically assume
that the camera acquisition and subsequent hardware processing do not alter the
adversarial patterns. However, Phan et al. [62] have recently realized attacks of
individual camera types by exploiting slight differences in their hardware ISPs
and optical systems.

2.3 Defense Methods

In response to adversarial attack methods, there have been significant efforts in
constructing defenses to counter those attacks. These include adversarial training
[52], input transformation [4,20], defensive distillation [60], dynamic models [83],
loss modifications [58], model ensemble [69] and robust architecture [28]. Note
that with the ongoing intense arms race between attacks and defenses, no defense
methods are immunized to all existing attacks [1]. We next analyze the two
representative categories of defense methods:

Adversarial Training (AT): The idea of AT is the following: in each train-
ing loop, it augments training data with adversarial examples generated by dif-
ferent attacks. AT is known to “overfit” to the attacks “seen” during training
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Fig. 2: Overview of the RAW imaging
pipeline model. The scene light field is cap-
tured by compound camera optics, and then
it is gathered by an MLA layer and fed
through a CFA layer. The color-filtered pho-
tons are converted into electrons based on
quantum efficiency before adding dark cur-
rent and noise. Next, the converted electrons
are clipped based on the maximum well ca-
pacity, es, and scaled by a sensor gain factor
κ. Finally, an ADC converts the analog sig-
nal into a digital readout with quantization
noise nq , IW.

and has been demonstrated to be vastly effective in defending those attacks.
However, AT does not generalize well on “unseen” attacks [72]. Furthermore,
iteratively generating adversarial images is time-consuming, taking 3-30 times
longer than standard training before the model converges [70]. Multiple methods
have been proposed to reduce the training time, making AT on large datasets
(e.g., ImageNet) possible [24,80,82,93]. Even so, for each specific model, it still
requires an extra adversarial training process and suffers from cross-domain at-
tacks. Besides the target model, it is also worth noting that adversarial examples
can be used to train the input preprocessing models. [46].

Input Transformation (IT): IT, as an image pre-processing approach,
aims to remove adversarial patterns to counter attacks. A considerable num-
ber of IT methods have been proposed such as JPEG compression [16, 20, 49],
randomization [84], image quilting [27], pixel deflection [64], and deep-learning-
based approaches [38, 50, 67]. These IT methods can seamlessly work with dif-
ferent downstream models and tasks. More importantly, the IT methods can be
easily combined with other model-specific defense methods to offer a stronger
defense.

Our work falls into the IT category. Unlike the existing IT methods to focus
on the preprocessing in the RGB distribution, the proposed approach leverages
intermediate natural RAW distribution to remove adversarial patterns, which is
the first work to exploit RAW distribution in the adversarial defense domain.

3 Sensor Image Formation

In this section, we review how a RAW image is formed. In short, when light from
the scene enters a camera aperture, it first passes through compound camera
optics. Following that is the aperture and shutter, which can be adjusted to define
f-number and exposure time. Then the light falls on image sensors (e.g., CCD
and CMOS), where the photons are color-filtered and converted into electrons.
Finally, the electrons are converted to digital values, comprising a RAW image.
We refer the reader to Karaimer and Brown [40] for a detailed review.

Compound Camera Optics: A compound lens consisting of a sequence of
optics is designed to correct optical aberrations. When a scene radiance, ISCENE

(in the form of a light field) enters a compound lens, the radiance is modulated
by the complex optical pipelines and generates the image IO, that appears on
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an image sensor surface. Compound optics can be modeled by spatially-varying
point spread functions (PSFs) [75].

Color Image Sensor Model: A conventional color image sensor has three
layers. On the top is a micro-lens array (MLA) layer; the bottom is a matrix of
small potential wells; a color filter array (CFA) layer sits in the middle. When
IO falls on a color image sensor, photons first goe through the MLA to improve
light collection. Next, light passes through the CFA layer, resulting in a mosaic
pattern of the three stimulus RGB colors. Finally, the bottom layer collects the
color-filtered light and outputs a single channel RAW image, IW .

The detailed process is illustrated in Figure 2. In particular, at the bottom
layer, a potential well counts photons arriving at its location (x, y) and converts
the accumulated photons into electrons, and the conversion process is specified
by the detector quantum efficiency. During the process, electrons could be gener-
ated by other resources, called electron noise. Two common electron noise types
are the dark noise nd, which is independent of light; and dark current nI , which
depends on the sensor temperature. These follow normal and Poisson distribu-
tions, respectively [75]. Next, the converted electrons are clipped based on the
maximum well capacity, es, and scaled by a sensor gain factor κ. Finally, the
modulated electrons are converted to digital values by an analog-to-digital con-
verter (ADC), which involves quantization of the input and introduces a small
amount of noise, nq.

Mathematically, a pixel of a RAW image, IW , at position (x, y) can be defined
as:

IW (x, y) = b+ nq + κmin(es, nd + nI +
∑
λ

e(x, y, λ)), (1)

where b is the black level, level of brightness with no light; e(x, y, λ) is the number
of electrons arrived at a well at position (x, y) for wavelength λ.

This image formation model reveals that besides the natural scene being
captured, RAW images heavily depend on the specific stochastic natures of the
optics, color filtering, sensing, and readout components. The proposed method
exploits these statistics.

4 Raw Image Domain Defense

In this section, we describe the proposed defense method, which leverages the
distribution of RAW measurements as a prior to project adversarially perturbed
RGB images to benign ones. Given an adversarial input, existing defense ap-
proaches learn an RGB-to-RGB projection from the adversarially perturbed dis-
tribution of RGB images, Y ′, to the closest point in corresponding RGB natural
distribution, Y . We use the operator T : Y ′ → Y for this projection operation.
As this RGB distribution Y empirically sampled from the ISP outputs of di-
verse existing cameras, it also ingests diverse reconstruction artifacts, making
it impossible to exploit photon-flux specific cues, e.g., photon shot noise, opti-
cal aberrations, or camera-specific readout characteristics – as image processing
pipelines are designed to remove such RAW cues.
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Fig. 3: Overview of the proposed defense
approach, see text. We note that the reso-
lution of the RAW image (RGGB) is twice
larger than that of the RGB image. We lin-
early scaled the RAW image in this figure
for better visualization.

Fig. 4: The architecture of the G opera-
tor, which is adopted and modified from
PyNet [33]. The finer operator level ex-
ploits upsampled coarser-level features to
reconstruct the RGB output. The model
is trained sequentially in a coarse-to-fine
manner.

Departing from existing methods, as illustrated in Figure 1, we learn a map-
ping from Y ′ to Y via an intermediate RAW distribution, X, which incorporates
these RAW statistics of natural images, such as sensor photon counts, multi-
spectral color filter array distributions and optical aberrations. To this end, the
approach leverages three specially designed operators: F : Y ′ → X, G : X → Y ,
and S : X → Y . Specifically, the F operator is a learned model, which maps an
adversarial sample from its adversarial distribution to its corresponding RAW
sample in the natural image distribution of RAW images. Operator G is another
learned network that performs an ISP reconstruction task, i.e., it converts a
RAW image to an RGB image. In theory, our goal can be achieved with these
two operators by concatenating both G(F (·)) : Y ′ → X → Y . However, as these
two operators are differentiable models, the potential adversary may still be able
to attack the model if, under stronger attack assumptions, he has full access to
the weight of preprocessing modules. To address this issue, we add the operator
S, a conventional ISP, to our approach, which is implemented as a sequence of
cascaded software-based sub-modules. In contrast to operator F , operator S is
non-differentiable. Operators F and G are trained separately without end-to-end
fine-tuning. Notably, the proposed defense scheme is entirely model-agnostic as
it does not require any knowledge of potential adversarial attacks.

For defending against an attack, as shown in Figure 3, the proposed approach
first uses the F operator to map an input adversarial image, I ′, to its intermedi-
ate RAW measurements, IW . Then, IW is processed separately by the G and S
operators to convert it to two images in the natural RGB distribution, denoted
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as IG and IS , respectively. Finally, our method outputs a benign image, I, in the
natural RGB distribution by combining IG and IS in a weighted-sum manner.
Mathematically, the defense process is defined as:

I = ωG(F (I ′)) + (1− ω)S(F (I ′)), (2)

where ω is a hyper-parameter for weighting the contributions from the two op-
erators G and S. In the following sections, we introduce each operator in detail.

4.1 F Operator: Image to RAW Mapping

We use a small learned encoder-decoder network as the F operator to map an
RGB image to its intermediate RAW measurements. The details of network
architecture is shown in supplementary.

We train this module in a supervised manner with two L2 losses. Both of
the L2 losses are calculated based on ground truth (GT) RAW and estimated
RAW images. The only difference between the two losses is the input RGB image
used for evaluating a RAW image. One is with the original input RGB image,
while the other is generated by adding Gaussian noise to the original input RGB
image. In doing so, F is trained with the ability to convert both benign and
slightly perturbed RGB images to their RAW distribution. We note that the
added Gaussian distribution is different from the correlated noise generated by
various adversarial attacks. Mathematically, given a benign RGB image, I, and
its corresponding GT RAW measurements, GTW , the loss function is defined as:

LF = ||F (I), GTW ||2 + ||F (I + αε), GTW ||2, (3)

ε ∼ N (µ, σ), (4)

where ε is a Gaussian noise with mean, µ, and standard deviation, σ; α is a
random number in the range between 0 and 1, weighting the amount of noise
added. We empirically set the µ and σ to 0 and 1, respectively.

4.2 G Operator: Learned ISP

The G operator, learned network, converts the Iw generated by the F operator
to an RGB image. The challenge of converting RAW images to RGB images is
that the process requires both global and local modifications. The global modi-
fications aim to change the high-level properties of the image, such as brightness
and white balance. In contrast, the local modifications refer to low-level process-
ing like texture enhancement, sharpening, and noise removal. During the image
reconstruction process, an effective local process is expected to be guided by
global contextual information, which requires the information exchange between
global and local operations. This motivates us to leverage a pyramidal convolu-
tional neural network to fuse global and local features for optimal reconstruction
results. We adopt and modify architecture similar to the PyNet [33]. As shown
in Figure 4, the network has five levels, the 1st level is the finest, and the 5th
level is the coarsest. The finer-level uses upsampled features from the coarser-
level by concatenating them. We modified PyNet by adding an interpolation
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layer before the input of each level, interpolating the downsampled RAW Bayer
pattern. This practice facilitates learning as the network only needs to learn the
residuals between interpolated RGB and ground truth RGB, leading to better
model performance.

The loss function for this model consists of three components: perceptual,
structural similarity, and L2 loss. The perceptual and L2 loss functions are
adopted to ensure the fidelity of the reconstructed image, and the structural
similarity loss function [81] is used to enhance the dynamic range. Given an
input RAW image, IW , and the corresponding GT RGB image GTI , the loss
function can be mathematically defined as:

LiG =βiLPerc(G(IW ), GTI) + γiLSSIM ((G(IW ), GTI))

+ L2(G(IW ), GTI) for i ∈ [1, 5], (5)

where i represents the training level. As the model is trained in a coarse-to-fine
manner, different losses are used for each level i. LPerc, LSSIM , and L2 represents
the perceptual loss calculated with VGG architecture, structural similarity loss,
and L2 loss, respectively; βi and γi are the two weighting hyper-parameters,
which are set empirically. The model is trained sequentially in a coarse-to-fine
manner, i.e., from i = 5 to i = 1.

4.3 S Operator: Conventional ISP

The S operator has the same functionality as the G operator, converting a
RAW image to an RGB image. Unlike the G operator, the S operator offers
the functionalities of a conventional hardware ISP pipeline using a sequence of
cascaded sub-modules, and it is non-differentiable.

While we may exploit the ISP pipeline of any digital camera we can extract
raw and post-ISP data from, we use a software-based ISP pipeline consisting of
the following components: Bayer demosaicing, color balancing, white balancing,
contrast improvement, and colorspace conversion sub-modules. Based on the
Zurich-Raw-to-RGB dataset [34], we manually tune the hyperparameters of all
sub-modules to find the optimal ones that offer the converted RGB image with
similar image quality to the original RGB ones. We refer the reader to the
Supplementary Material for a detailed description.

4.4 Operator Training

We use the Zurich-Raw-to-RGB dataset [34] to train the F and G operators. The
Zurich-Raw-to-RGB dataset consists of 20,000 RAW-RGB image pairs, captured
using a Huawei P20 smartphone with a 12.3 MP Sony Exmor IMX380 sensor
and a Canon 5D Mark IV DSLR. Both of the F and G operators are trained
in PyTorch with Adam optimizer on NVIDIA A100 GPUs. We set the learning
rate to 1e−4 and 5e−5 for training F and G operators, respectively. The hyper-
parameters used in our approach have the following settings: ω = 0.7 in Eq. 2;
µ = 0 and σ = 1 for the Gaussian noise used in Eq. 4 ; In Eq. 5, βi is set to 1
for i ∈ [1, 3] and 0 for i ∈ [4, 5]; γi is set to 1 for i = 1 and 0 for i ∈ [2, 5].
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FSGM PGD BIM DeepFool C&W NewtonFool BPDA

2/255 ↑ 4/255 ↑ 2/255 ↑ 4/255 ↑ 2/255 ↑ 4/255 ↑ L∞ ↑ L2 ↑ L∞ ↑ L2 ↑ L∞ ↑ L∞ ↑
ResNet-101

JPEG-Defense [20] 33.14 20.71 45.19 21.74 36.78 8.5 53.16 45.69 59.06 52.01 24.65 0.08
TVM [27] 43.75 40.02 45.46 44.35 44.86 41.93 47.69 39.89 45.51 40.44 22.6 6.39
Randomized Resizing & Padding [84] 45.21 34.97 45.38 27.75 40.04 18.04 73.06 62.47 66.53 59.87 27.93 2.66
HGD [47] 54.75 43.85 55.26 50.05 56.74 48.61 64.34 58.13 59.98 52.88 27.70 0.03
Pixel-Deflection [64] 54.56 35.14 60.68 34.86 58.71 41.91 75.97 64.13 66.29 60.91 28.81 1.87
ComDefend [38] 48.21 36.51 53.28 48.38 51.39 42.01 63.68 55.62 58.53 50.38 26.46 0.03
Proposed Method 66.02 58.85 68.34 66.17 66.91 63.01 72.04 63.52 71.40 67.33 40.96 38.85

InceptionV3

JPEG-Defense [20] 31.97 20.25 43.34 21.15 34.68 8.55 51.20 43.49 55.00 50.39 24.06 0.12
TVM [27] 42.47 37.23 42.75 41.61 42.80 39.71 45.21 37.39 43.27 37.51 23.05 4.58
Randomized Resizing & Padding [84] 41.86 34.49 43.41 25.60 39.42 16.62 70.24 58.65 63.24 55.62 27.55 2.09
HGD [47] 52.83 40.99 50.35 47.62 56.02 47.78 60.33 56.61 59.55 52.0 26.84 0.03
Pixel-Deflection [64] 51.42 34.27 56.13 32.49 56.18 39.13 71.16 61.58 61.94 57.58 28.01 1.56
ComDefend [38] 47.00 35.34 49.99 46.15 48.74 39.58 60.01 52.47 55.85 47.70 25.44 0.03
Proposed Method 63.03 56.34 65.69 63.03 64.77 59.49 69.25 60.04 66.97 64.69 38.01 36.43

Table 1: Quantitative Comparisons on ImageNet We evaluate Top-1 Accuracy on ImageNet and
compare the proposed method to existing input-transformation methods. The best Top-1 accuracies
are marked in bold. Our defense method offers the best performance in all settings, except for the
DeepFool attack.

Clean Image Adversarial Image Perturbation JPEG-Defense [20] TVM [27] Resizing & Padding [84] Pixel-Deflection [64] ComDefend [38] Operator G Operator S Proposed Method

Fig. 5: Qualitative outputs of the proposed method along with both G and S operators,
and state-of-the-art defense methods on the ImageNet dataset, see text.

5 Experiments & Analysis

The proposed method acts as an off-the-shelf input preprocessing module, and it
requires no additional training to be transferred to different tasks. To validate the
effectiveness and generalization capabilities of the proposed defense approach, we
evaluate the method on three different vision tasks, i.e., classification, semantic
segmentation, and 2D object detection, with corresponding adversarial attacks.

5.1 Experimental Setup

Adversarial Attack Methods: We evaluate our method by defending against
the following attacks: FGSM [26], BIM [43], PGD [53] , C&W [8], Newton-
Fool [37], and DeepFool [54]. For classification, we use the widely used Foolbox
benchmarking suite [65] to implement these attack methods. Since Foolbox does
not directly support semantic segmentation and object detection, we use the
lightweight TorchAttacks library [41] for generating adversarial examples with
FGSM, PGD, and BIM attacks. We also evaluate against the DAG [85] attack, a
dedicated attack approach for semantic segmentation and object detection tasks.
Moreover, we further evaluate against BPDA [2], an attack method specifically
designed for circumventing input transformation defenses that rely on obfus-
cated gradients. Applying our method for defending against BPDA, however,
requires a slight modification at inference time, see Supplementary Document
for details. We note that all applied attacks are untargeted. Definitions of all
attack methods are provided in the Supplementary Material.
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FSGM PGD BIM DAG
L∞ = 2/255 ↑ L∞ = 4/255 ↑ L∞ = 2/255 ↑ L∞ = 4/255 ↑ L∞ = 2/255 ↑ L∞ = 4/255 ↑ L∞ = 2/255 ↑ L∞ = 4/255 ↑

JPEG-Defense [20] 37.41 32.27 24.53 6.21 25.74 10.18 14.12 5.66
TVM [27] [27] 42.64 41.53 45.55 42.24 44.51 38.44 31.88 25.56
HGD [47] 43.39 40.82 44.54 40.88 40.03 39.95 28.61 22.36
Pixel-Deflection [64] 44.13 41.88 46.38 42.32 44.78 37.22 30.73 24.61
ComDefend [38] 45.57 39.23 44.85 41.14 42.71 36.12 28.94 23.36
Proposed Method 52.35 48.04 53.41 49.59 54.86 50.51 40.35 37.88

Table 2: Quantitative Comparison to SOTA Input-Transformation Defense Methods on
the COCO dataset. We evaluate all methods on mean IoU (mIoU) and mark the best mIoU in
bold. Our defense method offers the best performance in all settings.

FSGM PGD BIM DAG
L∞ = 2/255 ↑ L∞ = 4/255 ↑ L∞ = 2/255 ↑ L∞ = 4/255 ↑ L∞ = 2/255 ↑ L∞ = 4/255 ↑ L∞ = 2/255 ↑ L∞ = 4/255 ↑

JPEG-Defense [20] 39.02 35.88 37.96 33.51 38.85 34.69 30.72 25.07
TVM [27] 48.11 39.66 47.1 44.38 48.94 41.76 39.20 33.18
HGD [47] 50.68 40.06 51.24 45.92 46.80 39.74 41.15 37.23
Pixel-Deflection [64] 53.77 44.82 54.45 47.22 55.32 48.32 46.52 39.87
ComDefend [38] 50.18 42.93 50.46 43.08 52.32 44.2 44.68 37.22
Proposed Method 61.68 59.37 64.71 60.23 66.52 61.82 57.83 54.12

Table 3: Quantitative Comparison to SOTA Input-Transformation Defenses on the Pascal
VOC dataset. We evaluate all compared methods for mean average precision (mAP) on Pascal VOC
dataset. The best mAP are marked in bold. Our defense method offers the best performance in all
settings.

Baseline Defense Approaches: We compare to the following input transfor-
mation defense methods: JPEG compression [20], randomized resizing & padding [84],
image quilting [27], TVM [27], HGD [47], pixel deflection [64], and Comde-
fend [38]. We evaluate all baseline methods on the three vision tasks, except
that the randomized resizing & padding method is omitted in semantic seg-
mentation and object detection tasks as it destroys the semantic structure. We
directly adopt the open-source PyTorch implementation for all baseline methods.
We use the same training dataset as the one used to train our method for those
methods that required training. It is worth noting that all baseline methods do
not require adversarial examples for training.

Evaluation Dataset and Metrics: For classification, we use the ImageNet
validation set and evaluate the Top-1 classification accuracy of all competing
defense approaches. For semantic segmentation and object detection, we evaluate
on the MS COCO [48] and Pascal VOC [21] datasets. The effectiveness of all
methods for segmentation and detection is measured by mean Intersection over
Union (mIoU) and mean Average Precision (mAP), respectively.

5.2 Assessment

Classification: We apply a given attack method with ResNet101 and Incep-
tionV3 to generate adversarial samples. For FGSM, BIM, and PGD, we set two
different maximum perturbation levels in L∞ distance, namely 2/255 and 4/255.
The maximum number of iterations is set to 100 for both BIM and PGD. For
C&W, NewtonFool, and DeepFool attacks, we generate both L∞ distance based
attacks and L2 distance-based attacks; we choose 100 update steps for C&W and
NewtonFool, and 50 for DeepFool; DeepFool requires the number of candidate
classes, which is set to 10 in our experiments.

The Top-1 classification accuracies of all methods are reported in Table 1.
Our approach outperforms the baseline methods with a large margin under all
experimental settings except those with DeepFool attacks. Notably, under Deep-
Fool attacks, the differences between the best performer pixel-deflection and ours
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are marginal. Moreover, with PGD and BIM attacks, our defense method offers
the lowest relative performance degradation when the more vigorous attack is
performed (i.e., maximum perturbation increases from 2/255 to 4/255). Fig-
ure 5 qualitatively underlines the motivation of combining G and S operators
in a weighted sum manner. The G operator learns to mitigate the adversarial
pattern, i.e., it recovers a latent image in the presence of severe measurement
uncertainty, while the S operator can faithfully reconstruct high-frequency de-
tails. Note that our method is able to generalize well to images from the Im-
ageNet dataset, which typically depict single objects, although it is trained on
the Zurich-Raw-to-RGB dataset, consisting of street scenes.

Semantic Segmentation: In this task, we conduct experiments with two dif-
ferent types of attacks: the commonly used adversarial attacks, and the attack
specially designed for attacking semantic segmentation models. For the former,
FGSM, BIM, and PGD are used; We use DAG [85], a dedicated semantic seg-
mentation attack, for the latter. All attacks are based on a COCO-pretrained
DeepLabV3 model [12]. Two different maximum perturbation levels in L∞ are
used (i.e., 2/255 and 4/255). The corresponding experimental results are re-
ported in Table 2. The proposed approach significantly outperforms baseline
methods under all experimental settings. Note that no additional training is
required to apply the proposed Raw-Defense approach to defend other vision
tasks, validating the generalization capabilities of the method.

2D Object Detection: The experimental settings are the same as the ones used
for semantic segmentation experiments, except that we use a pretrained Faster
R-CNN [66]. We report the mAPs on the Pascal VOC dataset under different
experimental settings in Table 3. The proposed defense method offers the best
defense performance in all experimental settings, indicating that our approach
generalizes well to unseen tasks.

5.3 RAW Distribution Analysis

In this section, we provide additional analysis on the function of the RAW dis-
tribution as an intermediate mapping space. Fundamentally, we share the mo-
tivation from existing work that successfully exploits RAW data for imaging
and vision tasks, including [17, 77]. RGB images are generated by processing
RAW sensor measurements (see Sec. 3) with an image processing pipeline. This
process removes statistical information embedded in the sensor measurements
by aberrations in the optics, readout noise, color filtering, exposure, and scene
illumination. While existing work directly uses RAW inputs to preserve this
information, we exploit it in the form of an empirical intermediate image distri-
bution. Specifically, we devise a mapping via RAW space, thereby using RAW
data to train network mapping modules, which we validate further below. As a
result, we allow the method to remove adversarial patterns not only by relying on
RGB image priors but also RAW image priors. We validate the role of RAW data
in our method in Table 4, resulting in a large Top-1 accuracy drop (i.e., more
than 12%), when swapping the real RAW distribution to a synthesized one. This
is further corroborated in Table 5, where the defense breaks down from 71% to
53%, when gradually moving from RAW to RGB as intermediate image space.
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These experiment validate that, the “rawer” the intermediate image space is,
the better the defense performs.

Effect of Intermediate Mapping Space: We use the RAW image distribution
as the intermediate mapping space in our method. To validate the effectiveness
of this choice, we map to other intermediate stages in the processing pipeline,
such as demosaicing stage, color balance stage, and the white balance stage.
Specifically, we assess how using different stage values as intermediate map-
ping space affects the defense performance (i.e., we ablate on the intermediate
mapping space used). As reported in Table 5, we observe that the defense per-
formance gradually decreases as we map via a less RAW intermediate space. In
other words, the “rawer” the intermediate image space is, the better performance
can be achieved. This validates the importance and benefit of exploiting RAW
distribution in the defense.

Real RAW Versus Synthetic RAW: We further ablate on the dataset used to
train our model. Specifically, we trained F and G operator on the Zurich-Raw-
to-RGB dataset, HDR-RAW-RGB [29] and MIT-RAW-RGB [23] respectively
and assess how the defense performance changes. Similar to Zurich-Raw-to-RGB
dataset, the RAW images in HDR-RAW-RGB are captured by a real camera;
however, the ones offered by MIT-RAW-RGB are purely synthesized by refor-
matting downsampled RGB images into Bayer patterns with handcrafted Gaus-
sian noise. We note that, as such, the MIT-RAW-RGB dataset does not include
the RAW distribution cues. The experimental results are reported in Table 4.
As observed, both RAW distribution Zurich-Raw-to-RGB and HDR-RAW-RGB
allow us to learn effective adversarial defenses, while a sharp performance degra-
dation occurs when shifting from real RAW distribution to the synthesized one
due to the lack of natural RAW distribution cues. This again validates the effec-
tiveness of statistical information in the real RAW distribution when defending
against adversarial attacks.

FSGM PGD C&W NewtonFool DeepFool

Zurich-Raw-to-RGB [34] 58.85 66.17 71.40 40.96 72.04
HDR-RAW-RGB [29] 55.57 64.12 71.65 42.36 70.77
MIT-RAW-RGB [23] 40.52 47.29 55.13 28.52 58.49

Table 4: Quantitative Ablation Study on
RAW Training Datasets. We train F and G two
operators with three different RAW-RGB datasets
and report the Top-1 defense accuracy on the Im-
ageNet dataset. The RAW images in the Zurich-
Raw-to-RGB and HDR-RAW-RGB are captured
by real cameras, while the ones in MIT-RAW-RGB
are synthesized. We see a sharp performance drop
when swapping the real RAW training data to syn-
thetic data due to the lack of natural RAW distri-
bution cues.

FSGM PGD C&W NewtonFool DeepFool

Raw Capture 57.33 65.02 70.86 40.65 70.23
Demosaic Stage 52.93 59.83 63.29 36.76 64.81
Color Balance Stage 48.38 55.41 57.92 33.92 59.37
White Blance Stage 47.35 54.02 56.23 33.01 57.08
contrast Improvement Stage 45.2 52.18 54.18 31.84 55.64
Agamma adjustment Stage 44.4 50.91 53.08 30.57 54.19

Table 5: Effect of Different Intermediate
Mapping Spaces. We report the Top-1 ad-
versarial defense accuracy on ImageNet dataset
when mapping to different intermediate map-
ping spaces that are the steps of the image pro-
cessing pipeline. The performance drops as the
intermediate image space moves from RAW to
the RGB output space. This validates the im-
portance and benefit of exploiting RAW distri-
bution in the defense.

5.4 Robustness to Hyper-parameter and Operator Deviations

Hyper-parameter ω: We introduced a hyper-parameter ω for weighting the
contributions of the two operators G and S. Next, we evaluate how varying values
of ω affect the overall defense accuracy. As reported in Tab. 6, we find that, while



14 Y.Zhang, B.Dong, F.Heide

each attack has a different optimal value of ω, the range 0.6-0.8 provides a good
trade-off, and we use 0.7 in our experiments. Limited by space, we report here
a subset of attacks.

Hyper-parameter ω = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Against FSGM Attack 64.25 64.41 64.83 65.27 65.58 65.87 65.93 66.02 65.75 65.53 65.39
Against C&W Attack 69.16 69.44 69.93 70.26 70.81 70.96 71.35 71.40 72.70 71.28 71.07
Against DeepFool Attack 69.55 69.84 71.19 71.51 71.88 72.35 72.63 72.04 71.75 71.69 71.04

Table 6: Effect of hyper-parameter ω. We evaluate the impact of the method hyper-parameter ω
on the effectiveness of the proposed defense method.

F -300 F -320 F -340 F -360 F -380 F -400

G-300 66.02 66.08 65.93 66.05 66.03 66.05
G-330 66.11 66.04 65.97 66.01 65.99 66.04
G-360 65.98 66.04 66.02 65.89 66.08 69.01
G-390 65.98 65.95 66.00 66.04 65.99 65.94

Table 7: Robustness to Deviations of F and
G. We evaluate the defense accuracy when mixing
operator from different training epochs.

Gausian Noise σ 0 (no noise) 0.01 0.05 0.1 0.3 0.5

Against FSGM Attack 66.02 66.01 65.98 65.90 65.73 65.64
Against PGD Attack 68.34 68.30 68.22 68.10 68.03 67.83

Table 8: Robustness to Deviations of F . We
perturb the output of operator F with Gaussian
noise of different standard deviations and report
the defense accuracy.

Deviations of Operators F and G: The operator F and G are trained sepa-
rately and used jointly at the inference time. We evaluate how deviations in each
operator affect the overall performance in two experiments. First, we mix the
operators F and G from different training checkpoints and evaluate the effect
on the defense accuracy. Tab. 7 reports that the checkpoint combinations do not
result in a failure but only slight deviations of the defense performance. Second,
we add varying levels of Gaussian noise G(0, σ) to the output of operator F and
evaluate how such deviation affects the following steps and the overall defense
accuracy. Tab. 8 reports that such perturbations are not amplified in the fol-
lowing steps, and the defense accuracy only fluctuates slightly. The experiments
show that the ISP operators G and S themselves are robust to slight deviation
in each component.

6 Conclusion

We exploit RAW image data as an empirical latent space in the formulation of the
proposed adversarial defense method. Departing from existing defense methods
that aim to directly map an adversarially perturbed image to the closest benign
image, we exploit large-scale natural image datasets as an empirical prior for
sensor-captured images – before they end up in existing datasets after their
transformation through conventional image processing pipelines. This empirical
prior allows us to rely on low-level image processing pipelines to design the
mappings between the benign and perturbed image distributions. We validate
the effectiveness of the method, which is entirely model-agnostic, requires no
adversarial examples to train, and acts as an off-the-shelf preprocessing module
that can be transferred to diverse tasks. We also provided insight into the working
principles of the approach and assess that the method significantly outperforms
the comparable baselines. In the future, we plan to explore RAW natural image
statistics as an unsupervised prior for image reconstruction and generative neural
rendering tasks.
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