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Abstract

The dynamic membrane potential threshold, as one of the essential properties of a
biological neuron, is a spontaneous regulation mechanism that maintains neuronal
homeostasis, i.e., the constant overall spiking firing rate of a neuron. As such, the
neuron firing rate is regulated by a dynamic spiking threshold, which has been
extensively studied in biology. Existing work in the machine learning commu-
nity does not employ bioplausible spiking threshold schemes. This work aims
at bridging this gap by introducing a novel bioinspired dynamic energy-temporal
threshold (BDETT) scheme for spiking neural networks (SNNs). The proposed
BDETT scheme mirrors two bioplausible observations: a dynamic threshold has
1) a positive correlation with the average membrane potential and 2) a negative
correlation with the preceding rate of depolarization. We validate the effectiveness
of the proposed BDETT on robot obstacle avoidance and continuous control tasks
under both normal conditions and various degraded conditions, including noisy
observations, weights, and dynamic environments. We find that the BDETT out-
performs existing static and heuristic threshold approaches by significant margins
in all tested conditions, and we confirm that the proposed bioinspired dynamic
threshold scheme offers bioplausible homeostasis to SNNs in complex real-world
tasks.

1 Introduction
A spiking neural network (SNN) is a bioinspired neural network. Each spiking neuron is a mathe-
matical model abstracted from the properties of a biological neuron. Spiking neurons communicate
with each other through spike trains, mimicking the information transfer process of biological neu-
rons [1, 2, 3]. Similar to how biological action potentials are all-or-none impulses, the spikes of SNNs
are commonly binary voltage pulses. Leveraging this binary representation, specifically designed
neuromorphic hardware [4, 5, 6], e.g., TrueNorth [7] and Loihi [8], can run SNNs at extremely low
power levels; they are 75 times more energy-efficient than their deep neural network counterparts on
low-power GPU platforms [9]. As such, recently, SNNs have rapidly emerged as effective models for
robotic control tasks, especially in mobile robots that demand low power consumption [10, 11].

However, existing SNNs suffer from poor generalizability, unlike their biological counterparts.
Biologically, a neuron leverages a spontaneous regulation mechanism to maintain neuronal home-
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ostasis [12]—the stable overall spiking firing rate or excitability within a network [13]—to robustly
adapt to different external conditions and offer strong generalization. A dynamic threshold, one
type of regulatory mechanism, plays an essential role in maintaining neuronal homeostasis by reg-
ulating the action potential firing rate; such thresholds are widely observed in different nervous
systems [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. This threshold can be regarded as an adaptation to
membrane potentials at short timescales [16], and it influences how the received signals of a neuron
are encoded into a spike.

Even though different dynamic threshold schemes have been observed and extensively studied in
neuroscience, only a handful of existing works investigate bioinspired dynamic threshold rules to
improve the generalization of SNNs. Hao et al. [24] proposed a dynamic threshold method that
relies on a heuristic dynamic scaling factor to gradually slow the growth of a threshold. Conversely,
instead of controlling threshold growth, Shaban et al. [25] leveraged double exponential functions
to manage the threshold decay. Kim et al. [26] used a predefined target firing count to adjust their
threshold but did not define the optimal target firing count. No existing work has demonstrated that a
bioinspired dynamic threshold scheme can achieve homeostasis in real-world tasks. More importantly,
the existing work only validates the proposed dynamic threshold rules under ideal normal conditions
without testing generalization to degraded conditions, which we argue is essential to validate whether
homeostasis is achieved or not.

The direct use of bioplausible models in SNNs remains challenging, as most of these models are based
on single cells in the nervous system and contain many optimized constants. In this work, we lift this
limitation and introduce a novel bioinspired dynamic energy-temporal threshold (BDETT) scheme for
SNNs; the scheme comprises two components: a dynamic energy threshold and a dynamic temporal
threshold schema. The two components reflect the following two biological observations: in vivo, the
dynamic threshold exhibits a positive correlation with the average membrane potential and a negative
correlation with the preceding rate of depolarization (i.e., the excitatory status) [16]. The dynamic
energy threshold is inspired by a biological predictive model which can predict the occurrences of
spikes based on the previous membrane potential in the inferior colliculus of a barn owl [16]. The
proposed dynamic temporal threshold component is inspired by the fact that a monoexponential
function can effectively present a negative correlation [17, 22]. Notably, we provide an analysis of the
original biological models and propose layerwise statistical cues for SNNs to replace the constants in
the two original biological models.

We integrate the proposed BDETT into two widely used SNN models: a spike response model
(SRM) [27] and a leaky integrate-and-fire (LIF) model [28] (see Supplementary Material for details).
The effectiveness of BDETT is validated with these two SNN models for both autonomous robotic
obstacle avoidance and continuous control tasks under normal and various degraded conditions, e.g.,
dynamic obstacles, noisy inputs, and weight uncertainty. Extensive experimental results validate that
the SNNs equipped with the proposed BDETT offer the strongest generalization across all tested
scenarios. More importantly, we quantitatively validate that BDETT can significantly increase the
homeostasis of the host SNN. This is the first work to demonstrate that bioinspired dynamic threshold
schemes can offer bioplausible homeostasis to SNNs in robotic real-world tasks under normal and
degraded conditions, dramatically enhancing the generalizability and adaptability of the host SNNs.

In particular, we make the following contributions in this work:

• We introduce a bioinspired dynamic threshold scheme for SNNs that increases their general-
izability.

• We devise a method that uses layerwise statistical cues of SNNs to set the parameters of our
bioinspired threshold method.

• We validate that the proposed threshold scheme achieves bioplausible homeostasis, dramati-
cally enhancing the generalizability across tasks, including obstacle avoidance and robotic
control, and in normal and degraded conditions.

Scope We propose a novel approach to setting the parameters of our threshold scheme using layerwise
statistical cues of an SNN. Although this is essential for the proposed method to be effective,
implementing these statitical blocks directly in neuromorphic hardware may require extra engineering
efforts, which is out of the scope of this work.
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2 Background and Related Work
2.1 Spiking Neural Networks (SNNs)
Various models for spiking neurons have been described to mathematically describe the properties of
a nervous neuron. Typically, three conditions are considered by these models: resting, depolarization,
and hyperpolarization. When a neuron is resting, it maintains a constant membrane potential. The
change in membrane potential can be either a decrease or an increase relative to the resting potential.
An increase in the membrane potential is called depolarization, which enhances the ability of a cell to
generate an action potential; it is excitatory. In contrast, hyperpolarization describes a reduction in
the membrane potential, which makes the associated cell less likely to generate an action potential,
and, as such, is inhibitory. All inputs and outputs of a spiking neuron model are sequences of spikes.
A sequence of spikes is called a spike train and is defined as s(t) = Σt(f)∈Fδ(t − t(f)), where F
represents the set of times at which the individual spikes occur [29]. Typical spiking neuron models
set the resting potential as 0. However, existing models achieve depolarization and hyperpolarization
in substantially different ways. In the following, we briefly review two commonly used models: the
spike response model (SRM) [27] and leaky integrate-and-fire (LIF) model [28]. More details about
these two models are provided in Supplementary Note 1.

Spike Response Model (SRM) An SRM first converts an incoming spike train si(t) into a spike
response signal as (ε ∗ si)(t), where ε(·) is a spike response kernel. Then, the generated spike
response signal is scaled by a synaptic weight wi. Depolarization is achieved by summing all the
scaled spike response signals: Σiwi(ε ∗ si)(t). When incoming spike trains trigger a spike s(t),
the SRM models hyperpolarization by defining a refractory potential as (ζ ∗ s)(t), where ζ(·) is a
refractory kernel.

Leaky Integrate-and-Fire (LIF) An LIF model is a simplified variant of an SRM. This scheme
directly processes incoming spike trains and ignores the spike response kernel. Hyperpolarization is
achieved by a simplified step decay function, fd(s(t)) = D for s(t) = 0; 0 for s(t) = 1.

2.2 Spiking Neural Networks for Robot Control
Biological neural circuits have an impressive ability to avoid obstacles robustly in complex dynam-
ical environments, e.g., as in dragonfly flight trajectories. Inspired by this observation, recently,
researchers have explored SNNs for obstacle avoidance [30, 31, 32, 33]. For example, Tang et al. [33]
devised an SNN to mimic a neurophysiologically plausible connectome of the brain’s navigational
system without assuming all-to-all connectivity. Following the path, Tang et al. [9] proposed a
spiking deep deterministic policy gradient (SDDPG) method to train a LIF-based spiking actor-
network (SAN) for mapless navigation. They show that SNNs can robustly control a robot in mapping
tasks while being able to explore an unknown environment. SNNs have also been proposed for
continuous robot control tasks. Patel et al. [34] proposed to combine SNNs with a Deep Q-network
algorithm, improving the robustness to occlusion in the input image. Tang et al. [35] proposed a
population-coded spiking actor network (PopSAN) to solve high-dimensional continuous control
problems, trained using deep reinforcement learning algorithms. Recently, modern neuromorphic
hardware has made it possible to deploy SNNs on neuromorphic processors in ultra-low power
envelopes [9, 36, 37, 38]. Compared to existing convolutional deep policy networks [39] on the
mobile-GPUs such as the Nvidia Jetson TX2, SAN and PopSAN on Loihi neuromorphic processor
consume 75 and 140 times less energy per inferences, respectively. All SNN-based models discussed
above only consider static spiking thresholds. More importantly, experiments show that they suffer
from poor generalization and fail in realistic degraded conditions. In this work, we use both SAN and
PopSAN as testbeds and baseline methods to validate the effectiveness of the proposed bioinspired
dynamic threshold scheme, BDETT.

3 Bio-Plausible Dynamic Energy-Temporal Threshold (BDETT)
Motivated by the behavior of spiking threshold dynamics in biological nervous systems, we propose
a model with dynamic thresholds that exhibit positive and negative correlations with the average
membrane potential and the preceding rate of depolarization, respectively. To achieve this behavior
in the proposed scheme, given the i-th neuron in the l-th layer at timestamp t + 1, we define a
bioplausible dynamic threshold Θl

i(t+ 1) as

Θl
i(t+ 1) =

1

2
(Eli(t) + Tli(t+ 1)), (1)
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Figure 1: An illustration of the proposed BDETT scheme. a. We demonstrate the intuitive idea
of our BDETT scheme for the i-th neuron in the l-th layer at timestamp t+ 1 from the perspective of
an SRM-based SNN model; Θl

i(t) and vli(t) are the dynamic threshold and postsynaptic membrane
potential of the i-th neuron in the l-th layer at timestamp t, respectively. b & c. Two example DET
and DTT graphs, respectively.

where Eli(t) is the dynamic energy threshold (DET) of the neuron for ensuring a positive correlation,
and T li (t+ 1) is the dynamic temporal threshold (DTT), which ensures a negative correlation; see
Figure 4a. Note that each neuron has a different dynamic threshold at timestamp t+ 1 based on the
proposed DET and DTT, which we describe below.

Dynamic Energy Threshold (DET) Positive correlations between dynamic thresholds and average
membrane potentials have been observed in several areas of diverse biological nervous systems, such
as the visual cortex and auditory midbrain [17, 21, 22]. With sufficient voltage measurements at
spike onsets, one can fit a model to directly predict the voltage of a threshold [40]. However, the
fitted biological model is only meaningful to a specific nervous system, and stimulus or measurement
uncertainty can significantly impact the model accuracy. Fontaine et al. [16] proposed a biological
predictive approach to assess the occurrence of spikes based on the previous membrane potential; this
method does not rely on voltage measurements at spike onsets. Even though the model was based on
a barn owl’s inferior colliculus, it exhibits great generality in terms of threshold variability statistics
with other nervous systems (e.g., cortical neurons) [16]. The proposed dynamic energy threshold
is inspired by this biological predictive model but includes several changes that are critical for the
model to be effective in SNNs. For the i-th neuron in the l-th layer at timestamp t, we define

Eli(t) = η(vli(t)− V lm(t)) + V lθ (t) + ln(1 + e
vli(t)−V

l
m(t)

ψ ), (2)

V lm(t) = µ(vli(t))− 0.2(max(vli(t))−min(vli(t))) for i = 1, 2, ..., nl, (3)

V lθ (t) = µ(Θl
i(t))− 0.2(max(Θl

i(t))−min(Θl
i(t))) for i = 1, 2, ..., nl, (4)

where vli(t) is the neuron postsynaptic membrane potential at timestamp t; µ is the mean operator; nl
is the total number of neurons in the l-th layer; and η and ψ are two hyperparameters, which are set
empirically. Figure 4b shows two example graphs for Eq. 2; η controls the shallow slope, and 1

ψ + η

defines the slope of the steep part.

Intuitively, V lθ (t) and V lm(t) define a critical region. When the membrane potential vli(t) is smaller
than V lm(t), the function has a shallower slope, and the threshold value is dominated by V lθ (t). In
the opposite case, the energy threshold has a higher rate of increase to inhibit a high spiking firing
rate. In the biological predictive model proposed by Fontaine et al. [16], V lm(t) and V lθ (t) are the
constants to be optimized during the model fitting process. However, we find that directly adopting
these two fitted constants in an SNN does not result in generalization. Refer to experiment in the
main paper which shows this To tackle this challenge, we leverage the statistical cues of SNN layers
to adjust these two important parameters, as defined in Eqs. 3 and 4. Specifically, we model V lm(t)
as the mean of the membrane potentials of the neurons in the layer l. The mean value is shifted by a
bias, 0.2(max(vli(t)) −min(vli(t))), which is based on the range of the potentials; see Eq. 3. The
motivation behind this formulation is that we aim to couple the DET and the potentials of all other
neurons in the same layer. Furthermore, we leverage the bias term to adjust the DET sensitivity to the
layerwise potential range. Here, V lθ (t) is modeled based on similar insights, where we use threshold
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potentials (i.e., Θl
i(t)) instead of membrane potentials; see Eq. 4. We note that the performance of

the proposed BDETT is not sensitive to the constant value 0.2; see Supplementary Note 7 for details.

Dynamic Temporal Threshold (DTT) We propose a DTT scheme to address the observed negative
correlation between the spiking threshold and the preceding rate of depolarization. Azouz et al.
[17, 22] discovered that a monoexponential function y = a + be−V/C can effectively capture the
negative correlation of a biological neuron, where V = dVm/dt; C is a decay constant; and a, b,
and C are parameters to optimize. The authors applied this function to 42 cortical neurons and
found significant correlations in 92% of the trials [17]. We propose a variant of this mechanism. In
particular, we replace the constant a with an exponential decay function, and we base the decay rate
on the mean of the dynamic thresholds of all neurons in the l-th layer at the previous timestamp t; b
is set to 1. Additionally, we empirically set the delay constant C. Mathematically, for the i-th neuron
in the l-th layer, the DTT at timestamp t+ 1 is defined as

Tli(t+ 1) = a+ e
−(vli(t+1)−vli(t))

C , (5)

a = −e−|µ(Θli(t))| for i = 1, 2, ..., nl. (6)

Figure 4c shows two example graphs for Eq. 5. These plots highlight that higher depolarization
(i.e., vli(t+ 1)− vli(t) > 0) leads to a lower temporal threshold, while higher hyperpolarization (i.e.,
vli(t+ 1)− vli(t) < 0) significantly increases the temporal threshold. We propose modeling a similar
to how V lm(t) is modeled in the DET, that is, by coupling the DTT value and the layerwise dynamic
thresholds at the previous timestamp t (i.e., Θl

i(t)). The delay constant C adjusts the sensitivity of
the DTT to changes in the temporal potential of a neuron. As shown in Figure 4c, a lower C value
results in a substantially faster drop in the DTT value (i.e., the black curve) than that provided by a
higher C value (i.e., the blue curve).

Interaction of DET and DTT A critical difference between DET and DTT lies in the drivers of
the two threshold schemes. DET leverages the magnitude of the membrane potential to estimate
a threshold, while the DTT based on the preceding rate of depolarization. Therefore, they may be
counteracting or helping each other to achieve an optimal threshold. One example is that when noise
causes low potential fluctuations, the overall threshold should increase to suppress the noise. In this
case, the DET increases as the noise increases the membrane potential. However, DTT remains at a
relatively constant threshold (i.e., a+ 1) as the preceding rate of depolarization caused by the noise
is close to 0. When a neuron experiences a fast membrane potential drop, e.g., during the relative
refractory period, we expect the overall threshold to increase. In this scenario, even though DET
decreases with the reduced membrane potential, DTT increases faster. Hence, the proposed method
increases the overall threshold in this case.

4 Experiments
We assess the effectiveness of BDETT on two different tasks: robot obstacle avoidance and robotic
continuous control. In the robot obstacle avoidance task, a robot aims to reach a randomly chosen
destination without touching any obstacle within 1000 steps, counted as a “pass”. For this task,
we assess methods by measuring success rate (SR), the percentage of successful passes out of 200
trials. As continuous control tasks, we evaluate the HalfCheetah-v3 and Ant-v3 control outputs (see
Figure 3a) from the OpenAI gym [41]. In these two continuous control tasks, an agent relies on a
learned SNN-based control policy to decide the next action based on the current observation (i.e.,
state), and each action is associated with a reward; see Figure 3a. We assess control policies with the
total sum of the rewards. Note that the Ant-v3 control task is more challenging than HalfCheetah-v3,
with significantly large state and action spaces.

In addition to evaluating the control output, i.e., SR and total reward, we also measure the homeostasis
of the host SNNs. In particular, we use three statistical metrics, FRm, FRmstd, and FRsstd, to quantify
the homeostasis of an SNN; these metrics are based on the neuron firing rate. FRm is the mean
neuron firing rate of an SNN across all P trials; FRmstd is the average of P standard deviations, and
each of them is the standard deviation of the neuron firing rates of an SNN during a single trial; FRsstd
denotes the standard deviation of the P standard deviations. FRsstd represents the standard deviation
across all P trials, while FRmstd denotes the mean of these standard deviations. Details on these three
metrics can be found in Supplementary Note 2.

Experimental Setup For robot obstacle avoidance tasks, the we use variants of the spiking actor
network (SAN) [9] as host SNN. The original SAN uses LIF as its neuron model, but it resets the
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membrane potentials of all neurons to zero for each robot state. The resting operation is contradictory
to the leaky function of LIF. Therefore, we modify the SAN by removing the resting operation, which
is dubbed SAN-NR. To validate the effectiveness of the proposed BDETT, we integrate it into both
LIF-based and SRM-based SAN-NR models and compare them with their original static threshold
and two heuristic dynamic threshold schemes, DT1 [24] and DT2 [26]. See Supplementary Note
2 for details on the DT1 and DT2 schemes. We set the batch size to 256 and the learning rate to
0.00001 for both the actor and critic networks during the training process. In addition, we use the
following hyperparameter settings for the proposed BDETT: η = 0.01 and ψ = 4.0 for the DET and
C = 3.0 for the DTT. For estimating homeostasis, we set P = 200. See Supplementary Notes 4 for
further training details.

For robot continuous control, we adopt the population-coded SAN (PopSAN) [35] as our baseline
model; it is a modified version of SAN [9] with a specifically designed encoder and decoder for
accommodating high-dimensional control tasks. Note that PopSAN does not rest the membrane
potentials as the encoder leverages soft-reset IF neurons. Hence, PopSAN is the counterpart of the
SAN-NR used in the obstacle avoidance tasks. We integrate BDETT into both LIF- and SRM-based
PopSAN models and compare them with their original static threshold schemes and the two heuristic
dynamic schemes, DT1 and DT2. Following the evaluation settings of PopSAN [35], we train ten
models corresponding to ten random seeds, and the best-performing model is used for our assessment
conducted under different degraded conditions. In particular, the best-performing model is evaluated
ten times under each experimental condition, and the mean reward of the ten evaluations represents the
model performance. Each evaluation consists of ten episodes, and each episode lasts for a maximum
of 1000 execution steps. Hence, the P value used for estimating homeostasis is set to 100, i.e., 10
episodes × 10 evaluations. PopSAN and its variants are trained by using the twin-delayed deep
deterministic policy gradient off-policy algorithm [42]. The hyperparameter settings of BDETT is the
same as the ones used for obstacle avoidance tasks, except the ψ for the DET is set to 6.0. Following
the training protocol of PopSAN [35], we set the batch size to 100 and the learning rate to 0.0001 for
both the actor and critic networks. The reward discount factor is set to 0.99, and the maximum length
of the replay buffer is set to 1 million. See Supplementary Notes 5 for more training details related.

For the SRM-based baseline methods, the spike response kernel and refractory kernel of the SRM
are adopted from [27, 29], and they are defined as ε(t) = te1−t and ζ(t) = −2Θ(t)e−t, respectively.
For all tasks, each dimension of a robot state is encoded into a spike train with T timesteps. All
experimental results are obtained with T = 5. For a demonstration of the generalization provided by
the BDETT, we provide the experimental results obtained with T = 25 in Supplementary Notes 4, 5,
6 for the obstacle avoidance, HalfCheetah-v3, and Ant-v3 tasks, respectively.

4.1 Robot Obstacle Avoidance with BDETT
We evaluate the proposed method for robot obstacle avoidance tasks with one standard condition,
i.e., static obstacles, and three specifically designed adverse conditions: dynamic obstacles, degraded
inputs, and weight uncertainty. For the dynamic obstacle experiments, we introduce 11 dynamically
moving cylinders in a static testing environment, and each repeatedly wanders between two points;
see Figure 2a. The wandering distance and speed are designed to provide sufficient space and time
to allow possible passes. The robot utilizes a Robo Peak light detection and ranging (RPLIDAR)
system as its sensing device to detect obstacles, offering a field of view of 180 degrees with 18 range
measurements, as shown in Figure 2b.

In our degraded input scenario, we disturb the obtained range measurements in three different ways:
“0.2": We set the range of the 3rd, 9th, and 15th lasers to 0.2 m, always reporting obstacles even when
none occur; “6.0": This is similar to the “0.2" setting, but we set the three lasers’ ranges to 6.0 m,
which is the average visible range in the test environment and means that the three lasers cannot
perceive any obstacles; “GN": We add Gaussian noise [43] to each of the 18 range measurements.
The three proposed degraded input settings are illustrated in Figure 2c.

In the weight uncertainty experiments, as illustrated in Figure 2d, the learned synaptic weights
of the host SNNs are also disturbed in three different ways. “8-bit Loihi weight": Neuromorphic
hardware (e.g., Loihi) achieves computing efficiency by sacrificing the weight precision. Therefore,
when deploying an SNN on neuromorphic hardware, one needs to scale and round up the learned
floating-point synaptic weights to low-precision weights. “GN weight": We add Gaussian noise to
all weights. “30% zero weight": Among the synaptic weights between every two adjacent layers,
we randomly set 30% of them to 0. To reduce the impact of the randomness introduced in the “GN
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Figure 2: Proposed method for robot obstacle avoidance. a. The static and dynamic testing
environments of the obstacle avoidance tasks. b. The control loop of a robot. c. The three specifically
designed degraded input conditions. d. A demonstration of the three weight uncertainty experimental
settings. e. The SRs of obstacle avoidance under all experimental settings. ‘SO’ and ‘DO’ indicate the
testing environments with static and dynamic obstacles, respectively; ‘30%’ and ‘GNW’ denote the
“30% zero weight" and “GN weight" conditions. f. The heatmaps yielded by the best and runner-up
performers under three different conditions indicate the areas with lower SRs (i.e., thoes shown in
red). g & h show the LIF- and SRM-based SNNs’ homeostasis changes with respect to the base
condition (i.e., DO) in terms of three metrics. e-h use the same color codes as shown in f.

weight" and “30% zero weight" experiments, we report the average success rates (SRs) of 5-round
tests.

Success Rate The SRs of the competing LIF- and SRM-based approaches across all experimental
settings are reported in Figure 2e. For the “GN weight" and “30% zero weight" experiments, the
standard deviations of the 5-round SRs are also reported. The proposed BDETT achieves the highest
SRs in all experiments, demonstrating its effectiveness. Notably, under dynamic obstacle conditions,
the BDETT outperforms the runners-up by significant margins (9% versus the LIF and 12% versus the
SRM). Under degraded input conditions, the BDETT yields at least 10% more successful passes than
other competing methods. In the weight uncertainty experiments, our BDETT increases the SRs of
the baseline SAN-NR model by at least 10.5%, 24.6%, and 15.6% under “8-bit Loihi weight", “GN
weight", and “30% zero weight" settings, respectively. The success rates of the best and runner-up
performers under three different adverse conditions are also qualitatively illustrated in Figure 2f
(see Supplementary Figure 3 for additional results). We observe that our BDETT can help the
robots effectively avoid both static and dynamic obstacles under all three adverse conditions; see
Supplementary Tables 2, 3, and 4 for details.

Homeostatic Evaluation When an SNN is in homeostasis, all neurons are expected to have similar
and sparse firing patterns under different conditions [44, 45]. Therefore, when transferring from one
condition to another, the SNNs with stronger homeostasis are expected to induce fewer changes in
all three metrics. The changes induced in all successful trials involving the LIF- and SRM-based
host SNNs under different experimental settings are illustrated in Figures 2g and h, respectively.
The changes (i.e., in ∆FRm, ∆FRmstd, and ∆FRsstd) are estimated with respect to the corresponding
homeostasis achieved in the dynamic obstacle experiments, i.e., under the base condition. The
proposed BDETT scheme yields minimal changes in all three metrics when transferring from the base
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condition to all other experimental settings, except for the ∆FRsstd estimated based on the SRM-based
8-bit Loihi weight experiment. The figures highlight that the proposed BDETT significantly improves
on the baseline SAN-NR model, as evidenced by the remarkable drops in these three statistical
metrics. For example, as shown in the “6.0" section of the ∆FRm in Figure 2g, our dynamic threshold
scheme reduces the ∆FRm from 0.043 to 0.001. In the “0.2" section of the ∆FRsstd in Figure 2h, the
∆FRsstd is decreased to 1.7% of its original value (from 0.0058 to 0.0001). We also witness that the
DT1 and DT2 schemes significantly weaken the baseline model’s homeostasis, as shown in Figure 2g
in the “0.2" section of the ∆FRmstd and the “6.0" section of the ∆FRsstd.

The goal of homeostasis to enhance the host SNN generalization. Therefore, we expect SNNs with
stronger homeostasis (i.e., smaller ∆FRm, ∆FRmstd, and ∆FRsstd values) to outperform those with
weaker homeostasis. Our experimental results confirm this, validating that the strong homeostasis
provided by our BDETT can improve the generalization capabilities of SNNs to different degraded
conditions. We argue that this is a highly desired capability not only for mobile robotics but also for
broader machine learning. See Supplementary Note 4 for more experimental results and analysis.

4.2 Continuous Robot Control with BDETT

For the HalfCheetah-v3 and Ant-v3 tasks, similar to the robot obstacle avoidance tasks, we evaluate on
one standard and two specifically designed degraded inputs and weight uncertainty adverse conditions
to demonstrate the strong generalization enabled by our BDETT. In this context, for the degraded
input conditions, we disturb the observations of these two control tasks in three ways. “Random joint
position": For each episode, one of the joint positions is randomly selected, and its original position
is replaced by a random number sampled from a Gaussian distribution N (0, 0.1). “Random joint
velocity": We randomly select one of the joint velocities in each episode and change its observed
velocity to a random number sampled from a Gaussian distribution N (0, 10.0). “GN": In each
episode, we add Gaussian noise sampled from the distributionN (0, 1.0) to each dimension of a state;
see Figure 3b. The weight uncertainty conditions of the control tasks are the same as those used in
the robot obstacle avoidance tasks, as illustrated in Figure 3c.

Rewards As shown in Figures 3d and e, under all experimental settings, the proposed BDETT
offers the host SNNs the highest rewards, significantly improving upon the rewards of the baseline
PopSAN model by at least 438 (i.e., the SRM-based PopSAN model under the “GN" setting) for the
HalfCheetah-v3 tasks and 213 (i.e., the LIF-based PopSAN model under the “Random joint velocity"
setting) for the Ant-v3 tasks. Notably, under weight uncertainty conditions with a HalfCheetah-v3
agent, even with low-precision 8-bit weights, the proposed BDETT helps the SRM-based host SNN
achieve a higher reward than that obtained with high-precision floating-point weights (11767 vs.
11268); see Supplementary Tables 7 and 9. With an Ant-v3 agent, the proposed BDETT helps both
the LIF- and SRM-based host SNNs achieve higher rewards, even with low-precision weights, i.e.,
5570 vs. 5526 and 5648 vs. 5643, respectively. See Supplementary Notes 5 and 6 for additional
experimental results and analysis related to the HalfCheetah-v3 and Ant-v3 tasks, respectively.

Homeostatic Evaluation In Figures 3f-i, we show the changes induced in these three metrics when
shifting from normal conditions (i.e., the base conditions) to all other experimental settings. The
proposed BDETT offers the strongest homeostasis to the host SNNs among all competing approaches
for both the HalfCheetah-v3 and Ant-v3 control tasks.

In particular, for the HalfCheetah-v3 control task, as shown in the “30% zero weight" section of
the ∆FRm in Figure 3f, our dynamic threshold scheme reduces the ∆FRm of the baseline PopSAN
model from 0.069 to 0.006. In the “GN weight" section of the ∆FRsstd in Figure 3g, the proposed
BDETT decreases the ∆FRsstd of the SRM-based PopSAN to 8.3% of its original value (from 0.0012
to 0.0001); see Supplementary Table 10 for details. For the Ant-v3 control task, as shown in the
“GN weight" section of the ∆FRm in Figure 3h, our dynamic threshold scheme reduces the ∆FRm
of the LIF-based baseline model from 0.041 to 0.003. In the “Random joint position" section of
the ∆FRsstd in Figure 3h, the ∆FRsstd of the LIF-based baseline model is decreased to 10% of its
original value (from 0.0010 to 0.0001); see Supplementary Table 15 for details. As in the obstacle
avoidance tasks, the DT1 and DT2 schemes significantly decrease the homeostasis of both the LIF-
and SRM-based baseline models in both continuous control tasks. Some extreme cases are shown in
the “Random joint velocity" section of the ∆FRmstd in Figure 3f, and the “GN weight" section of the
∆FRm in Figure 3i.
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Figure 3: Proposed method for continuous robot control. a. The control loops of HalfCheetah-v3
and Ant-v3. b. Examples of the three specifically designed degraded input conditions, where the
red dots and curved arrows indicate the disturbed joint positions and velocities, respectively. c. The
three specifically designed weight uncertainty conditions. d & e. The rewards of the HalfCheetah-
v3 and Ant-v3 tasks across all experimental conditions, respectively. ‘Base’ indicates the normal
base condition; ‘RP’ and ‘RV’ denote ‘Random joint position’ and ‘Random joint velocity’. f & g.
The LIF- and SRM-based SNNs’ homeostasis changes with respect to the ‘Base’ condition in the
HalfCheetah-v3 tasks. h & i. The LIF- and SRM-based SNNs’ homeostasis changes with respect to
the ‘Base’ condition in the Ant-v3 tasks. d-i use the same color codes shown in e.

These experimental results obtained for the two continuous control tasks support the observations
obtained in the obstacle avoidance tasks. More importantly, we witness that the strong homeostasis
provided by our BDETT improves generalization to severely degraded conditions.

4.3 BDETT without Statistical Parameter Adjustment
We found it essential to replace the constants in the two biological models we base our approach
on with layerwise statistical cues. Here, we report the performance of the BDETT with the original
constants of the fitted biological models, demonstrating the effectiveness of the proposed layerwise
statistical parameter settings. In particular, we first use the corresponding constants of the fitted
adaptive threshold model [16] and replaced the V lm(t) and V lθ (t), i.e., Eq. 3 and Eq. 4, with 3 and 7,
respectively. These two constants are obtained by shifting the originally fitted constants −67 and
−63 by 70 to compensate for the difference of the rest potentials; −70 mV in the original model but
0 mV for LIF and SRM models. Furthermore, we use the original fitted parameters in our DTT, and

Eq. 5 becomes Tli(t + 1) = 1.0 + 10e
−(vli(t+1)−vli(t))

3 . For obstacle avoidance, with the originally
fitted constants, the LIF-based policy cannot produce any successful pass even under the standard
testing condition; SR drops from 92.5% to 0%. For the HalfCheetah-v3 and Ant-v3 tasks, with the
originally fitted constants, the rewards achieved by a LIF-based policy dropped from 11064 to −35
and 5276 to −9, respectively. Note that an untrained BDETT-based policy achieves −124 and −73
rewards for these two continuous control tasks. These experimental results validate that the proposed
statistical cues are essential to the proposed method.

5 Conclusion
This work introduces a novel biologically inspired BDETT scheme to SNNs that significantly im-
proves generalization, and as such, fills a gap between biological research and machine learning.
Dynamic threshold behavior plays an essential role in maintaining a neuronal homeostasis in bio-
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logical nervous systems. Motivated by this observation, we propose a dynamic threshold scheme to
achieve homeostasis in artificial SNNs. We assess the proposed approach in real-world tasks under
normal and severely degraded conditions to validate its generalization capabilities. We find that
the proposed dynamic threshold achieves strong homeostasis along with generalization to diverse
degraded conditions. This finding is a step toward employing bioplausible SNNs in real-world
applications. As future work, we plan to implement the proposed scheme on neuromorphic hardware
to broadly deploy BDETT in future robotic platforms.
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A Supplementary Material

Supplementary Note 1: Spiking Neural Networks

Spiking Neural Network (SNN)

Various models for spiking neurons mathematically describe the properties of a cell in the nervous system with
varying degrees of detail. Normally, three conditions are considered by these models: resting, depolarization,
and hyperpolarization. When a neuron is resting, it maintains a constant membrane potential. The change in
membrane potential can be either a decrease or an increase relative to the resting potential. An increase in the
membrane potential is called depolarization, which enhances a cell’s ability to generate an action potential; it
is excitatory. In contrast, hyperpolarization describes a reduction in the membrane potential, which makes the
associated cell less likely to generate an action potential, and, as such, is inhibitory. All inputs and outputs of a
spiking neuron model are sequences of spikes.

A sequence of spikes is called a spike train and is defined as s(t) = Σt(f)∈Fδ(t− t
(f)), where F represents the

set of times at which the individual spikes occur [29]. Typical spiking neuron models set the resting potential
to 0. However, existing models achieve depolarization and hyperpolarization in substantially different ways.
In the following, we review two commonly used models: the spike response model (SRM) [27] and leaky
integrate-and-fire (LIF) model [28].

Spike Response Model (SRM) An SRM first converts an incoming spike train si(t) into a spike response signal
as (ε ∗ si)(t), where ε(·) is a spike response kernel. Then, the generated spike response signal is scaled by a
synaptic weightwi. Depolarization is achieved by summing all the scaled spike response signals: Σiwi(ε∗si)(t).
When incoming spike trains trigger a spike s(t), the SRM models hyperpolarization by defining a refractory
potential as (ζ ∗ s)(t), where ζ(·) is a refractory kernel. With an SRM, a feedforward SNN architecture with nl

layers can be defined. Given N l incoming spike trains at layer l, sli(t), the forward propagation process of the
network is mathematically defined as follows [27, 29]:

vl+1
i (t) =

Nl∑
j=1

wij(ε ∗ slj)(t) + (ζ ∗ sl+1
i )(t− 1), (7)

sl+1
i (t) = fs(vl+1

i (t)), (8)

fs(v) : v → s, s(t) := s(t) + δ(t− t(f+1)), (9)

tf+1 = min{t : v(t) = Θ, t > t(f)}, (10)

where fs(·) is a spike function and Θ is the membrane potential threshold, which is static and the same for all
neurons in the network. This static threshold is the one that we replace with the proposed bioplausible dynamic
threshold.

Leaky Integrate-and-Fire (LIF) An LIF model is a simplified variant of an SRM. This scheme directly
processes incoming spike trains and ignores the spike response kernel. Hyperpolarization is achieved by a simple
decay function fd(·). The forward propagation process of the network can be defined as:

vl+1
i (t) =

Nl∑
j=1

wijs
l
j(t) + vl+1

i (t− 1)fd(sl+1
i (t− 1)) + bl+1

i , (11)

sl+1
i (t) = fs(vl+1

i (t)), (12)

fd(s(t)) =

{
D s(t) = 0

0 s(t) = 1,
(13)

where bl+1
i is an adjustable bias that is learned to mimic a dynamic threshold behavior. However, the biases of

this model are static during forwarding propagation. In contrast, the proposed dynamic threshold is dynamic and
automatically adapts to membrane potentials.

Supplementary Note 2: Related Mathematical Definitions

In this section, we provide mathematical definitions for DT1, DT2, and Loihi weight transferring. In addition,
we formally define the proposed homeostasis metrics.
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DT1 Hao et al. [24] noted that neurons do not (or barely) fire when their thresholds are too large, which can
negatively affect model performance. Therefore, they proposed DT1 to slow threshold growth. For the i-th
neuron in the l-th layer, DT1 at timestamp t is mathematically defined as:

Θl
DT1,i(t) = Θconst + (−Θl

DT1,i(t− 1) +
Θinitial

|2Θl
DT1,i(t− 1)−Θinitial|

nl∑
i=1

sli(t)), (14)

where Θconst and Θinitial are two hyperparameters; the dynamic threshold is mainly controlled by a dynamic
scaling factor Θinitial

|2Θl
DT1,i

(t−1)−Θinitial|
; nl is the total number of neurons in the l-th layer. For fair comparisons

with other competing approaches, we apply grid search to find the optimal values of Θinitial and Θconst and
ensure that the host SNNs of DT1 offer similar success rates (SRs) in the static obstacle avoidance task to those
of other approaches. Based on the grid search, Θinitial is set to 10.0; 0.5 and 0.2 are the optimal values of
Θconst for the LIF-based and SRM-based host SNNs, respectively.

DT2 Inspired by the observed homeostasis in biology, Kim et al. [26] proposed DT2 to maintain neurons’ firing
rates at a predefined constant target frequency. Mathematically, for the i-th neuron in the l-th layer, DT2 at
timestamp t is defined as:

Θl
DT2,i(t) = Θl

DT2,i(t− 1) + (

nl∑
i=1

sli(t))− f l
target)×Θl

DT2,i(t− 1)× γ, (15)

where f l
target is the predefined constant target frequency; γ is a homeostasis factor that determines the threshold

changing rate. Based on our grid search, we set f l
target to 85 (i.e., 1/3 of 256) for the three 256-neuron layers

and γ to 0.004 to achieve the same static obstacle avoidance performance as that of other competing SNNs.

8-Bit Loihi Weights In our weight uncertainty (WU) experiments, we scale and round up the learned floating-
point synaptic weights to low-precision 8-bit weights. The weight scaling process is defined as:

rl =
wLoihi

max

wl
max

, (16)

w
(l)(Loihi)
ij = round(rlwl

ij), (17)

Θ
(l)(Loihi)
i (t) = round(rlΘl

i(t)), (18)

vli(t) = v
(l)(Loihi)
i (t)/rl, (19)

where rl is the rescaling ratio of layer l; wLoihi
max is the maximum weight that Loihi supports; wl

max is the
maximum weight of the l-th layer of the host SNN; wl

ij is the synaptic weight between the i-th neuron in the
l-th layer and the j-th neuron in the (l − 1)-th layer, and w(l)(Loihi)

ij is the corresponding rescaled weight on

Loihi; Θl
i(t) and Θ

(l)(Loihi)
i (t) are the original membrane threshold and the corresponding threshold for Loihi of

the i-th neuron in the l-th layer at timestamp t, respectively; round(x) is a rounding function that returns the
rounded version of x. Notably, to estimate Θl

i(t), we need to know the original membrane potentials. However,
all the membrane potentials on Loihi are rescaled. Therefore, to obtain the original membrane potentials, we
need to reverse the process defined in Eq 19.

Homeostasis Metrics We leverage three statistical metrics to quantify the homeostasis of an SNN. Mathemati-
cally, they are defined as follows:

FRm = µ(FRp
m) for p = 1, 2, ..., P, (20)

FRm
std = µ(FRp

std) for p = 1, 2, ..., P, (21)
FRs

std = σ(FRp
std) for p = 1, 2, ..., P, (22)

FRp
m = µ(f l,p

i ) for i = 1, 2, ..., N l l = 1, 2, ..., L, (23)

FRp
std = σ(f l,p

i ) for i = 1, 2, ..., N l l = 1, 2, ..., L, (24)

f l,p
i =

∑Tp

tp=1 s
l
i(t

p)

T p
, (25)

where, T p is the time taken for the p-th trial and f l,p
i is the firing rate of the i-th neuron in the l-th layer during

the p-th trial. FRp
m denotes the mean firing rate of all neurons of an SNN during the p-th trial, and FRp

std is the
standard deviation of all neuron firing rates for an SNN during the p-th trial. The definitions of FRm, FRm

std, and
FRs

std are defined in the main paper.
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Supplementary Note 3: Biological Concepts

A typical biological neuron has four morphological regions: a cell body, dendrites, an axon, and synaptic
terminals. Inside the cell body (i.e., the soma), a nuclear envelope contains the cell’s genes. The short tree-like
dendrites branch out from the cell body, and they are the main apparatus for receiving incoming signals from
other neurons. The long tubular axon covered by the myelin sheath extends some distance from the cell body
and carries action potential to other neurons through synaptic terminals. A typical nerve neuron is illustrated in
Figure 4a.

In a nerve cell that is at rest, the extracellular surface of the cell membrane has an excess positive charge,
while the cytoplasmic side has an excess negative charge. The cell membrane maintains the separation of
charge as a barrier against the diffusion of ions; see Figure 4b. The electrical potential difference across the
membrane is defined as the membrane potential, which has three different statuses: resting, depolarization, and
hyperpolarization. At rest, no net charge movement across the membrane occurs, and the resting membrane
potential is maintained. By convention, the potential outside the cell is defined as zero, and hence, the resting
potential is a negative value. A net flow of cations or anions into or out of a cell disturbs the resting membrane,
causing depolarization or hyperpolarization, respectively. Depolarization indicates less negative membrane
potential, while hyperpolarization signifies more negative potential; see Figure 4c.

Dynamic Thresholds in Biological Neurons

The Hodgkin-Huxley model [46] has served as an archetype for compartmental models of the electrophysiology
of biological membranes (see Figure 4a). Many numerical methods leverage the Hodgkin-Huxley model as
their testbeds, which can be applied to more complex models [17, 47, 48]. We use the Hodgkin-Huxley model
to introduce the concept of threshold in biological neurons. Based on the Hodgkin-Huxley model, an action
potential is produced when the membrane potential is higher than a particular threshold; this involves the
following sequence of processes. First, when the membrane potential is higher than a threshold, the associated
depolarization opens sodium (Na+) channels, resulting in an inward Na+ current. By discharging the membrane
capacitance, the inward current causes further depolarization and the opening of more Na+ channels, resulting
in a further increase in the inward current. Second, under prolonged depolarization, the voltage-gated Na+

channels become inactive. Furthermore, after some delay, the voltage-gated potassium (K+) channels begin to
open, causing an outward K+ current that tends to repolarize the membrane (see Figure 4b). The second process
underlies the absolute refractory period [49], a period during which no action potential can be elicited. After
that, with some K+ channels being closed and some Na+ channels recovering from inactivation, the membrane
enters a relative refractory period [49] (see Figure 4c). During this period, it is possible to trigger an action
potential, but this requires a higher threshold.

Note that a small subthreshold depolarization cannot trigger an action potential, as it not only increases the
inward Na+ current but also increases the outward K+ current [46]. Only at a specific membrane potential
value does the net ionic current become inward, depositing a net positive charge on the inside of the membrane
capacitance. This specific value is the potential (or spike) threshold [50].

The threshold changes dynamically, widely observed in the different nervous systems [14, 15, 16, 17, 18,
19, 20, 21, 22]. A thread of studies leverage the Hodgkin-Huxley model to verify the observed threshold
dynamics [51, 17]. However, not all spike initiation dynamics of biological neurons can be accurately described
by the Hodgkin-Huxley model [52].
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Figure 4: a. The structure of a neuron. b. We demonstrate a sodium (Na+) voltage-gated channel
under resting, activated, and inactivated (refractory) states. The Na+ channel enters an inactivated
state after depolarization and returns to a resting state only after the membrane potential is restored to
its resting potential. c. The process of action potential generation, which is based on the Hodgkin-
Huxley model [46], involves the sequential opening of voltage-gated Na+ and K+ channels. The Na+

and K+ conductance curves are adapted from the Hodgkin-Kuxley model [46].
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Supplementary Note 4: Additional Details on Obstacle Avoidance
Experiments

Experimental Setup

In the obstacle avoidance experiments, our evaluation baseline model and test environment are modified variants
of the spiking actor network (SAN) [9] and its original simulated test environment, respectively. The SAN is
a part of the spiking deep deterministic policy gradient (SDDPG) framework [9], which is a fully connected
four-layer SNN (i.e., three 256-neuron hidden layers and one two-neuron output layer). This network maps a
state s of a robot to a control action a. Specifically, a state s = {Gdis, Gdir, ν, ω, L} is encoded into 24 Poisson
spike trains as inputs of the SAN, and each spike train has T timesteps. Gdis and Gdir are the relative 1-D
distances from the robot to the goal and a 2-D direction (i.e., right and left directions), respectively; ν and ω are
the robot’s 1-D linear and 2-D angular velocities (i.e., rightward and leftward angular velocities); L denotes the
distance measurements obtained from a Robo Peak light detection and ranging (RPLIDAR) laser range scanner
(range: 0.2-40 m), which has a field of view of 180 degrees with 18 range measurements, each with a 10-degree
resolution. The two output spike trains are decoded to control the robot via an action a = {νL, νR}, where νL
and νR are the left and right wheel speeds of the differential-drive mobile robot, respectively [9].

Figure 5: Illustrations of the training, static testing and dynamic testing environments. a. The
training environments of the obstacle avoidance tasks. The training processes of all competing SNNs
start from Env1 and end with Env4. b. Static testing environment. c. Dynamic testing environment.
In addition to static obstacles, 11 dynamic obstacles are inserted.

Training

The SAN and its modified versions are trained with the original SDDPG framework. The training environments
consist of four different maps, as shown in Figure 5a. In particular, during the training process, we set 100,
200, 300, and 400 start-goal pairs in the Env1, Env2, Env3, and Env4, respectively. The training starts from
Env1 and ends with Env4. Following the training protocol described by Tang et al. [9], the hyperparameters
related to training are set as follows: D = 0.75 for the LIF; η = 0.01 and ψ = 4.0 for the dynamic
energy threshold (DET); C = 3.0 for the dynamic temporal threshold (DTT); τs = τr = 1.0 for the SRM;
collision reward = −20; goal reward = 30; step reward = 15; goal l2 distance threshold = 0.5 m; obstacle
l2 distance threshold = 0.35 m; ε ranges for Env1 to Env4 of (0.9, 0.1), (0.6, 0.1), (0.6, 0.1), and (0.6, 0.1),
respectively; and corresponding ε-decays of 0.999 for the four environments. During the training procedure,
we set the batch size to 256 and the learning rates to 0.00001 for both the actor and critic networks. We use
PyTorch [53] to train and test all competing SNNs with an i7-7700 CPU and an NVIDIA GTX 1080Ti GPU. We
direct the readers to the SAN algorithm [9] for details.

Assessment—Success Rate

We evaluate the obstacle avoidance capabilities of the proposed method by using SR as a metric. The SR is the
percentage of successful passes out of 200 trials. A successful pass is a trial in which the robot can reach its
destination without touching any static or dynamic obstacle within 1000 steps. In addition to the SR, we also
report the overtime percentage (OTP), the percentage of overtime trials out of the total trials (i.e., 200 trials),
where overtime is defined as a trial in which the robot cannot reach the goal within 1000 steps but does not touch
any obstacle.

We use the Gazebo simulator to construct a 20× 20 m2 static test environment (see Figure 5b) and adopt the
randomly sampled 200 start-goal location pairs used for testing the SAN [9]. For fairness, we apply grid searches
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on all tunable hyperparameters to ensure that the SRs of all competing approaches are relatively the same (i.e.,
within ±2%) when testing in the static testing environment. The quantitative experimental results obtained by
all competing dynamic threshold methods in the static obstacle avoidance tasks are shown in Table 1. Due to
space limits, we only report the experimental results based on T = 5 in the main manuscript. Here, we offer the
quantitative performance with both T = 5 and T = 25.

Based on Table 1, compared to the SRs obtained with T = 5, the SRs obtained under T = 25 only change
slightly (i.e., ±0.5%), indicating that all competing SNNs are not sensitive to the T value in static obstacle
avoidance tasks. The observations related to the T value also hold in the dynamic obstacle experiments (see
Table 2). However, we observe that the SRs decrease as the T value increases for most degraded input and
weight uncertainty experiments.

Tables 2, 3, and 4 show the quantitative performance of all competing approaches in dynamic obstacle, degraded
inputs, and weight uncertainty experiments, respectively. The SRs are also shown in Figures 7a and b. In terms
of the OTPs, we witness high levels of overtime trials in the “0.2" section of the degraded inputs condition and
the “GN weight" section of the weight uncertainty condition. As discussed in the main manuscript, with the
“0.2" setup, the three disturbed lasers generate more spikes than they are supposed to, making the robot more
cautious. Thus, the robot’s speed slows, leading to more overtime trials. As expected, adding Gaussian noise to
the learned weights reduces the effectiveness of the avoidance policy. However, our approach faces the most
negligible impact, offering the best SRs under all experimental results. In the following, we provide a more
detailed analysis for each degraded condition.

Dynamic Obstacles As discussed, we introduce 11 dynamically moving cylinders to the static testing envi-
ronment; see Figure 5c. Table 2 shows the corresponding experimental results obtained under this condition.
Our approach delivers the highest SRs with both the LIF and SRM neuron models. Notably, under both the
T = 5 and T = 25 settings, the proposed approach outperforms the runners-up by significant margins (by at
least 9% over the LIF model and 12% over the SRM). The results demonstrate that the proposed bioplausible
dynamic threshold scheme provides substantial environmental adaptability to the host SNNs. Since all the
synaptic weights and static thresholds of both the SAN and the SAN with no resting operation (SAN-NR)
are learned from the environments with static obstacles only, we expect that they cannot adapt well to an
environment with dynamic objects. Surprisingly, compared to the static threshold scheme, the two heuristic
dynamic threshold schemes, DT1 and DT2, obtain lower SRs. The threshold dynamics provided by DT1 rely
on two hyperparameters, the constant potential and initial potential. DT2 requires a target firing count to be
set. These hyperparameters are justified during the training process but fixed during testing. We believe that
these hyperparameters dramatically impact the adaptability of the tested heuristic dynamic threshold schemes.
In contrast, the dynamics offered by the proposed bioinspired dynamic energy-temporal threshold (BDETT)
scheme are dynamically based on layerwise statistical cues.

Degraded Inputs In this experiment, as discussed in our main manuscript, in addition to the presence of
dynamic obstacles, we disturb the obtained range measurements in three different ways: a) “0.2": we set the 3rd,
9th, and 15th laser ranges to 0.2 m. In this case, the three modified measurements always report obstacles in their
perception fields even when none are present; b) “6.0": the ranges of the same three lasers are set to 6.0 m, which
is the average visible range in the test environment. This means that the three lasers cannot perceive any object;
c) “GN": we add Gaussian noise (i.e., clip(sinput +N (0, 1.0), 0.2, 6.0), as suggested in a study regarding long
short-term memory with a local map critic (LSTM-LMC) [43]) to each of the 18 range measurements. The
experimental results obtained under these settings are shown in Table 3.

Figure 6: The success rate heatmaps. The heatmaps yielded by the best and runner-up performers
under four different conditions indicate the areas with lower success rates (i.e., those shown in red).

In all degraded input experiments, the SRs offered by our BDETT scheme still remain the highest and outperform
the runners-up by at least 10%. This reflects that the proposed dynamic threshold scheme provides the host
SNNs with strong adaptability to all designed degraded inputs, which is highly desired and appreciated in mobile
robot applications. In the “0.2" setup, the three disturbed lasers generate more spikes than they are supposed
to, making the robot more cautious. All host SNNs obtain lower SRs than those obtained under the dynamic
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Figure 7: The experimental results obtained for the robot obstacle avoidance tasks. a & b. The
SRs of obstacle avoidance under normal and different degraded conditions under the T = 5 and
T = 25 settings, respectively. ‘SO’ denotes the static obstacle condition; ‘DO’ represents the dynamic
obstacle condition; ‘0.2’, ‘6.0’, and ‘GN’ are the three degraded input conditions; ‘8-bit’, ‘GNW’,
and ‘30%’ denotes the 8-bit Loihi weights, GN weights, and 30% zero weights, respectively. c & d.
Homeostasis measurements obtained with the T = 5 setting by the LIF- and SRM-based host SNNs.
e & f. The homeostasis results obtained with the T = 25 setup by the LIF- and SRM-based host
SNNs, respectively.

obstacle settings. However, the SRM-based host SNNs are significantly impacted. We believe the reason for this
is that the spike response and refractory kernels of the SRM amplify the intense spikes triggered by the three
modified measurements. In the “6.0" experiments, the three modified measurements trigger fewer spikes, and the
robot becomes more relaxed due to the ‘hyperopia’ effect. Therefore, we expect more failed passes than in the
“0.2" setup. This is true for the LIF-based SNNs but not for the SRM-based SNNs. Since the three farsighted
lasers reduce the signal amplification effects caused by the two kernels, the SRM-based SNNs perform better
here than in the “0.2” experiments. Under the “GN" condition, the SRs of all competing host SNNs decrease,
but our approach is the least affected and induces the lowest SR drops. Remarkably, under all degraded input
experiments, the proposed BDETT improves upon the SRs of both the LIF-based and SRM-based baseline
models (i.e., SAN-NR) by at least 10% and 17%, respectively. The success rates of the best and runner-up
performers under “0.2” and “6.0” conditions are also qualitatively illustrated in Figure 6.

Weight Uncertainty Neuromorphic hardware (e.g., Loihi) achieves computing efficiency by sacrificing the
weight precision, and an 8-bit integer normally yields the highest precision. Therefore, when deploying an
SNN on neuromorphic hardware, one needs to scale and round up the learned floating-point synaptic weights to
low-precision weights. We mimic this scenario by mapping the learned weights to Intel’s Loihi 8-bit integer
weights. The mapping equations are provided in Supplementary Note 2. In addition, we design two extra weight
pollution experiments. “GN weight" involves adding Gaussian noise (i.e., wij +N (0, 0.05)) to all synaptic
weights; under “30% zero weight", we reandomly set 30% of the synaptic weights between every two adjacent
layers to 0. To reduce the impact caused by the randomness introduced in the two additional experiments, we
report the average SRs of 5-round tests.

As shown in Table 4, the proposed BDETT can effectively reduce the impact caused by degraded synaptic
weights and deliver the best SRs under all experimental settings. Low-precision weight convergence slightly
reduces the SRs of all competing host SNNs slightly. We observe that the effectiveness of the SRM-based SNNs
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Table 1: Quantitative performance of obstacle avoidance with static obstacles.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Name SR↑ OTP SR↑ OTP SR↑ OTP SR↑ OTP
SAN 98% 0.0% 96.5% 0.0% 98% 0.0% 96% 0.0%
SAN-NR 98% 0.0% 95.5% 0.0% 98.5% 0.0% 95.5% 0.0%
DT1 [24] 96.5% 0.0% 95% 0.0% 96% 0.0% 94.5% 0.5%
DT2 [26] 97% 0.0% 95% 0.0% 97% 0.0% 94% 0.0%
DET only 96% 0.0% 95.5% 0.0% 95.5% 0.0% 95% 0.0%
DTT only 97% 0.0% 95.5% 0.0% 97% 0.0% 95% 0.0%
BDETT 98.5% 0.0% 96.5% 0.0% 98% 0.0% 97% 0.0%

Table 2: Quantitative performance of obstacle avoidance with dynamic obstacles.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Name SR↑ OTP SR↑ OTP SR↑ OTP SR↑ OTP
SAN 81.5% 0.0% 78.5% 0.0% 81% 0.0% 77.5% 0.0%
SAN-NR 83.5% 0.0% 77.5% 0.5% 83.5% 0.0% 77% 1.0%
DT1 [24] 74.5% 0.0% 68.5% 0.0% 74% 0.5% 68.5% 0.5%
DT2 [26] 80% 0.0% 71.5% 0.5% 80% 0.0% 71.5% 0.0%
DET only 81% 0.0% 78.5% 0.5% 80.5% 0.0% 78.5% 1.0%
DTT only 88% 0.0% 83.5% 0.0% 86.5% 0.0% 82% 0.0%
BDETT 92.5% 0.0% 90.5% 0.0% 93% 0.0% 89.5% 0.5%

is dramatically impacted by the “GN weight" and “30% zero weight" pollution settings, especially the SAN.
This means that SRM-based models are more sensitive to weight changes than LIF-based SNNs. Again, under
the three degraded conditions, the proposed BDETT increases the SRs of the baseline model SAN-NR by at least
9.5%, 14.2%, and 14.8%. The success rates of the best and runner-up performers under “8-bit Loihi weight”
and “30% zero weight” conditions are also qualitatively illustrated in Figure 6.

20



Table 3: Quantitative performance of obstacle avoidance under degraded input conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name SR↑ OTP SR↑ OTP SR↑ OTP SR↑ OTP

0.2

SAN 78.5% 1.5% 68% 1.0% 74% 2.5% 60.5% 1.0%
SAN-NR 80% 2.5% 59% 3.0% 76% 3.0% 39.5% 4.5%
DT1 [24] 65.5% 4.0% 64% 3.5% 60.5% 3.5% 58.5% 5.0%
DT2 [26] 78% 3.0% 53.5% 3.5% 72.5% 4.0% 49% 3.5%
DET only 83% 2.0% 71.5% 3.0% 77.5% 3.5% 67.5% 3.0%
DTT only 78.5% 3.5% 64.5% 1.0% 72.5% 3.5% 62% 2.5%
BDETT 90% 2.5% 79.5% 3.5% 87.5% 3.5% 76% 4.5%

6.0

SAN 71% 0.0% 70% 0.0% 73% 0.0% 72% 0.0%
SAN-NR 70% 0.0% 61.5% 0.0% 71% 0.0% 65.5% 0.0%
DT1 [24] 62% 0.0% 67% 0.0% 64% 0.0% 66.5% 0.0%
DT2 [26] 61.5% 0.0% 55% 0.5% 61.5% 0.0% 57.5% 0.0%
DET only 80% 0.0% 79% 0.0% 79.5% 0.0% 79.5% 0.0%
DTT only 80% 0.0% 75.5% 0.0% 81% 0.0% 76% 0.0%
BDETT 84.5% 0.0% 83% 0.0% 86% 0.0% 83.5% 0.0%

GN

SAN 71.5% 0.0% 57% 0.0% 63% 0.0% 51.5% 0.5%
SAN-NR 72% 0.0% 65.5% 1.0% 67% 0.5% 54.5% 2.0%
DT1 [24] 60.5% 0.5% 58% 0.0% 56.5% 0.5% 55.5% 0.0%
DT2 [26] 71.5% 1.5% 61.5% 0.0% 68% 1.0% 57% 1.5%
DET only 78.5% 1.0% 75.5% 0.5% 76% 2.0% 71% 0.5%
DTT only 75.5% 0.0% 69% 0.0% 70.5% 0.0% 66.5% 0.5%
BDETT 84.5% 0.0% 82.5% 0.0% 81.5% 0.0% 79% 0.5%

Table 4: Quantitative performance of obstacle avoidance under weight uncertainty conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name SR↑ OTP SR↑ OTP SR↑ OTP SR↑ OTP

8-bit
Loihi

weight

SAN 78.5% 0.0% 77% 0.0% 77.5% 0.0% 74.5% 0.0%
SAN-NR 79.5% 0.0% 76.5% 0.5% 79% 0.0% 75.5% 0.0%
DT1 [24] 70% 0.0% 67% 0.0% 67.5% 0.5% 65.5% 0.0%
DT2 [26] 78.5% 0.0% 67.5% 1.0% 77% 0.0% 67% 0.5%
DET only 77.5% 0.0% 75% 0.0% 74.5% 0.5% 75% 0.0%
DTT only 86% 0.0% 80.5% 0.0% 81.5% 0.0% 80% 0.0%
BDETT 90% 0.0% 88.5% 0.0% 88.5% 0.0% 87.5% 0.0%

GN
weight

(5 rounds)

SAN 51.3% (σ-6.8) 1.2% 0% (σ-0) 20.3% 36.2% (σ-7.3) 3.6% 0% (σ-0) 18.4%
SAN-NR 52.5% (σ-7.1) 1.6% 37.2% (σ-7.6) 2.4% 39.0% (σ-7.8) 3.1% 38.4% (σ-8.9) 2.1%
DT1 [24] 54.6% (σ-7.9) 2.3% 44.9% (σ-11.4) 3.0% 35.7% (σ-9.2) 3.3% 32.4% (σ-9.6) 4.7%
DT2 [26] 73.2% (σ-7.4) 2.1% 43.6% (σ-4.4) 2.4% 56.2% (σ-9.3) 2.0% 30.3% (σ-5.7) 2.9%
DET only 61.8% (σ-12.0) 1.8% 43.3% (σ-4.6) 2.5% 47.0% (σ-11.3) 2.3% 34.1% (σ-5.4) 2.6%
DTT only 77.1% (σ-8.8) 1.5% 46.4% (σ-8.0) 1.6% 64.7% (σ-8.0) 1.8% 36.8% (σ-10.2) 1.4%
BDETT 87.7% (σ-3.3) 0.8% 61.8% (σ-2.9) 1.3% 70.1% (σ-4.2) 0.4% 52.6% (σ-4.0) 2.5%

30%
Zero

weight
(5 rounds)

SAN 59.3% (σ-10.5) 0.0% 0% (σ-0) 17.7% 51.2% (σ-11.3) 0.0% 0% (σ-0) 19.4%
SAN-NR 61.6% (σ-7.5) 0.0% 46.5% (σ-12.4) 0.0% 53.6% (σ-6.7) 0.0% 36.5% (σ-9.9) 0.2%
DT1 [24] 41.2% (σ-7.7) 0.7% 44.3% (σ-11.7) 0.0% 32.2% (σ-9.1) 1.3% 31.7% (σ-12.6) 0.6%
DT2 [26] 55.6% (σ-9.3) 0.3% 49.1% (σ-10.8) 0.8% 48.0% (σ-10.5) 0.0% 37.8% (σ-10.2) 1.1%
DET only 46.2% (σ-8.5) 0.0% 39.8% (σ-11.5) 1.4% 33.6% (σ-8.5) 0.8% 29.3% (σ-12.3) 2.5%
DTT only 60.6% (σ-9.5) 0.0% 45.4% (σ-7.4) 0.5% 50.3% (σ-8.7) 0.4% 38.8% (σ-8.0) 1.3%
BDETT 77.2% (σ-3.6) 0.0% 65.2% (σ-2.7) 0.3% 68.4% (σ-5.2) 0.0% 56.5% (σ-4.3) 0.7%
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Table 5: The raw homeostasis measurements of successful trials and the corresponding changes with
respect to the baseline condition in obstacle avoidance tasks with the T = 5 setting.

LIF (T = 5) SRM (T = 5)

Type Name FRm(∆) FRmstd(∆) FRsstd(∆) FRm(∆) FRmstd(∆) FRsstd(∆)

Dynamic
obstacle
(baseline

condition)

SAN 0.523 0.325 0.000891 0.278 0.301 0.000596
SAN-NR 0.515 0.330 0.001029 0.487 0.309 0.006853
DT1 [24] 0.443 0.325 0.001738 0.482 0.310 0.002942
DT2 [26] 0.400 0.345 0.002136 0.418 0.309 0.005873
DET only 0.508 0.336 0.001024 0.380 0.276 0.002564
DTT only 0.456 0.320 0.000902 0.475 0.294 0.002284
BDETT 0.439 0.312 0.000916 0.501 0.298 0.001759

0.2

SAN 0.556 (0.033) 0.329 (0.004) 0.000750 (0.000141) 0.293 (0.015) 0.247 (0.054) 0.000746 (0.000150)
SAN-NR 0.565 (0.050) 0.326 (0.004) 0.000738 (0.000291) 0.508 (0.021) 0.333 (0.024) 0.001069 (0.005784)
DT1 [24] 0.479 (0.036) 0.387 (0.062) 0.000973 (0.000765) 0.518 (0.036) 0.348 (0.038) 0.003993 (0.001051)
DT2 [26] 0.412 (0.012) 0.370 (0.025) 0.001293 (0.000843) 0.438 (0.020) 0.325 (0.016) 0.001709 (0.004164)
DET only 0.495 (0.013) 0.353 (0.017) 0.001523 (0.000499) 0.380 (0.000) 0.244 (0.032) 0.003969 (0.001405)
DTT only 0.481 (0.025) 0.335 (0.015) 0.000768 (0.000134) 0.420 (0.055) 0.335 (0.041) 0.002040 (0.000244)
BDETT 0.444 (0.005) 0.315 (0.003) 0.000851 (0.000065) 0.494 (0.007) 0.310 (0.012) 0.001884 (0.000125)

6.0

SAN 0.564 (0.041) 0.342 (0.017) 0.001454 (0.000563) 0.275 (0.003) 0.306 (0.005) 0.000747 (0.000151)
SAN-NR 0.558 (0.043) 0.339 (0.009) 0.001548 (0.000519) 0.483 (0.004) 0.306 (0.003) 0.002533 (0.004320)
DT1 [24] 0.432 (0.011) 0.318 (0.007) 0.002862 (0.001124) 0.471 (0.011) 0.315 (0.005) 0.004224 (0.001282)
DT2 [26] 0.407 (0.007) 0.354 (0.009) 0.003785 (0.001649) 0.408 (0.010) 0.320 (0.011) 0.005417 (0.000456)
DET only 0.515 (0.007) 0.374 (0.038) 0.003088 (0.002064) 0.377 (0.003) 0.230 (0.046) 0.003889 (0.001325)
DTT only 0.450 (0.006) 0.325 (0.005) 0.003057 (0.002155) 0.403 (0.072) 0.290 (0.004) 0.002855 (0.000571)
BDETT 0.440 (0.001) 0.317 (0.005) 0.000960 (0.000044) 0.501 (0.000) 0.300 (0.002) 0.001870 (0.000111)

GN

SAN 0.534 (0.011) 0.310 (0.015) 0.001416 (0.000525) 0.287 (0.009) 0.204 (0.097) 0.000727 (0.000131)
SAN-NR 0.527 (0.012) 0.314 (0.016) 0.001622 (0.000593) 0.497 (0.010) 0.298 (0.011) 0.007395 (0.000542)
DT1 [24] 0.451 (0.008) 0.319 (0.006) 0.000982 (0.000756) 0.502 (0.020) 0.302 (0.008) 0.004634 (0.001692)
DT2 [26] 0.405 (0.005) 0.337 (0.008) 0.001654 (0.000482) 0.423 (0.005) 0.283 (0.026) 0.005578 (0.000295)
DET only 0.502 (0.006) 0.361 (0.025) 0.001228 (0.000204) 0.390 (0.010) 0.283 (0.007) 0.002454 (0.000110)
DTT only 0.445 (0.011) 0.315 (0.005) 0.001453 (0.000551) 0.390 (0.085) 0.308 (0.014) 0.001968 (0.000316)
BDETT 0.443 (0.004) 0.307 (0.005) 0.000880 (0.000036) 0.500 (0.001) 0.301 (0.003) 0.001886 (0.000127)

8-bit
Loihi

weight

SAN 0.520 (0.003) 0.319 (0.006) 0.000988 (0.000097) 0.288 (0.010) 0.314 (0.013) 0.000731 (0.000135)
SAN-NR 0.513 (0.002) 0.334 (0.004) 0.001286 (0.000257) 0.479 (0.008) 0.315 (0.006) 0.005527 (0.001326)
DT1 [24] 0.437 (0.006) 0.319 (0.006) 0.001589 (0.000149) 0.473 (0.009) 0.325 (0.015) 0.002084 (0.000858)
DT2 [26] 0.407 (0.007) 0.340 (0.005) 0.001853 (0.000283) 0.425 (0.007) 0.316 (0.007) 0.005638 (0.000235)
DET only 0.505 (0.003) 0.341 (0.005) 0.000868 (0.000156) 0.385 (0.005) 0.285 (0.009) 0.002185 (0.000379)
DTT only 0.446 (0.010) 0.325 (0.005) 0.000787 (0.000115) 0.460 (0.015) 0.301 (0.007) 0.002436 (0.000152)
BDETT 0.439 (0.000) 0.308 (0.004) 0.000932 (0.000016) 0.500 (0.001) 0.293 (0.005) 0.001570 (0.000189)

GN
weight

(5 rounds)

SAN 0.501 (0.022) 0.338 (0.013) 0.001192 (0.000301) - - -
SAN-NR 0.490 (0.025) 0.338 (0.008) 0.001281 (0.000252) 0.498 (0.011) 0.326 (0.017) 0.004461 (0.002392)
DT1 [24] 0.407 (0.036) 0.349 (0.024) 0.001902 (0.000164) 0.487 (0.005) 0.319 (0.009) 0.003573 (0.000631)
DT2 [26] 0.391 (0.009) 0.335 (0.010) 0.001356 (0.000780) 0.410 (0.008) 0.291 (0.018) 0.010002 (0.004129)
DET only 0.516 (0.008) 0.375 (0.039) 0.002225 (0.001201) 0.399 (0.019) 0.212 (0.064) 0.003675 (0.001111)
DTT only 0.467 (0.011) 0.327 (0.007) 0.001244 (0.000342) 0.387 (0.088) 0.301 (0.007) 0.002387 (0.000103)
BDETT 0.444 (0.005) 0.318 (0.006) 0.001013 (0.000097) 0.498 (0.003) 0.299 (0.001) 0.001602 (0.000157)

30%
Zero

weight
(5 rounds)

SAN 0.448 (0.075) 0.321 (0.004) 0.001490 (0.000599) - - -
SAN-NR 0.454 (0.061) 0.335 (0.005) 0.001399 (0.000370) 0.470 (0.017) 0.331 (0.022) 0.009941 (0.003088)
DT1 [24] 0.387 (0.056) 0.313 (0.012) 0.002045 (0.000307) 0.456 (0.026) 0.334 (0.024) 0.005103 (0.002161)
DT2 [26] 0.377 (0.023) 0.358 (0.013) 0.001834 (0.000302) 0.403 (0.015) 0.332 (0.023) 0.003469 (0.002404)
DET only 0.520 (0.012) 0.387 (0.051) 0.002582 (0.001558) 0.356 (0.024) 0.235 (0.041) 0.005036 (0.002472)
DTT only 0.470 (0.014) 0.337 (0.017) 0.002551 (0.001649) 0.394 (0.081) 0.274 (0.020) 0.003706 (0.001422)
BDETT 0.444 (0.005) 0.316 (0.004) 0.000993 (0.000077) 0.497 (0.004) 0.318 (0.020) 0.003855 (0.002096)

Assessment—Homeostatic

In the main manuscript, we show the quantified homeostasis changes induced during all successful trials with
respect to the base condition (i.e., the homeostasis obtained in the dynamic obstacle experiments) under the
T = 5 setting. Table 5 provides the raw homeostasis measurements and the corresponding changes used for
plotting the polar chart in the main manuscript.

We also offer the measured homeostasis and corresponding changes obtained under the T = 25 setting in
Table 6. The corresponding polar plots are shown in Figures 7e and f. Similar to the observations obtained in
the experiments with T = 5, the association between homeostasis and the obstacle avoidance SR still holds for
T = 25; stronger homeostasis offers better performance. Notably, our approach induces the smallest changes in
the three metrics across all experimental settings, except for the ∆FRm

std obtained in the SRM-based 8-bit Loihi
weight experiment. Furthermore, the proposed BDETT delivers the best obstacle avoidance SRs in all designed
experimental conditions with T = 25; see Tables 2, 3, and 4 and Figures 7e and f.
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Table 6: The raw homeostasis measurements of successful trials and the corresponding changes with
respect to the baseline condition in obstacle avoidance tasks with the T = 25 setting.

LIF (T = 25) SRM (T = 25)

Type Name FRm(∆) FRmstd(∆) FRsstd(∆) FRm(∆) FRmstd(∆) FRsstd(∆)

Dynamic
obstacle
(baseline

condition)

SAN 0.524 0.325 0.002098 0.285 0.306 0.001504
SAN-NR 0.515 0.331 0.001440 0.488 0.312 0.003486
DT1 [24] 0.447 0.324 0.002155 0.485 0.319 0.002473
DT2 [26] 0.401 0.347 0.002470 0.420 0.314 0.005771
DET only 0.509 0.336 0.001206 0.384 0.279 0.002483
DTT only 0.449 0.317 0.001736 0.475 0.301 0.002515
BDETT 0.439 0.311 0.001035 0.501 0.301 0.002394

0.2

SAN 0.556 (0.032) 0.330 (0.005) 0.000798 (0.001300) 0.294 (0.009) 0.245 (0.061) 0.001004 (0.000500)
SAN-NR 0.566 (0.051) 0.326 (0.005) 0.000768 (0.000670) 0.536 (0.048) 0.351 (0.039) 0.001224 (0.002260)
DT1 [24] 0.481 (0.034) 0.387 (0.063) 0.001097 (0.001060) 0.517 (0.032) 0.344 (0.025) 0.003823 (0.001350)
DT2 [26] 0.415 (0.014) 0.370 (0.023) 0.001662 (0.000810) 0.438 (0.018) 0.326 (0.012) 0.001781 (0.003990)
DET only 0.496 (0.013) 0.353 (0.017) 0.001424 (0.000218) 0.380 (0.004) 0.246 (0.033) 0.003362 (0.000879)
DTT only 0.485 (0.036) 0.336 (0.019) 0.000972 (0.000760) 0.420 (0.055) 0.335 (0.034) 0.003116 (0.000601)
BDETT 0.444 (0.005) 0.314 (0.003) 0.001104 (0.000069) 0.494 (0.007) 0.310 (0.010) 0.002238 (0.000160)

6.0

SAN 0.558 (0.034) 0.341 (0.016) 0.001415 (0.000683) 0.275 (0.010) 0.303 (0.003) 0.000839 (0.000665)
SAN-NR 0.550 (0.035) 0.340 (0.009) 0.001165 (0.000275) 0.484 (0.004) 0.306 (0.006) 0.003828 (0.000342)
DT1 [24] 0.433 (0.014) 0.319 (0.005) 0.002449 (0.000294) 0.471 (0.014) 0.315 (0.004) 0.003621 (0.001148)
DT2 [26] 0.406 (0.005) 0.353 (0.006) 0.003206 (0.000736) 0.406 (0.014) 0.320 (0.006) 0.005094 (0.000667)
DET only 0.516 (0.007) 0.374 (0.038) 0.003172 (0.001966) 0.377 (0.007) 0.241 (0.038) 0.003248 (0.000765)
DTT only 0.450 (0.001) 0.327 (0.010) 0.002744 (0.001008) 0.413 (0.062) 0.289 (0.012) 0.002742 (0.000227)
BDETT 0.440 (0.001) 0.316 (0.005) 0.001247 (0.000212) 0.501 (0.000) 0.300 (0.001) 0.002092 (0.000302)

GN

SAN 0.538 (0.014) 0.311 (0.014) 0.002522 (0.000424) 0.288 (0.003) 0.209 (0.097) 0.000883 (0.000621)
SAN-NR 0.530 (0.015) 0.318 (0.013) 0.003055 (0.001615) 0.503 (0.015) 0.299 (0.013) 0.005029 (0.001543)
DT1 [24] 0.452 (0.005) 0.319 (0.005) 0.001408 (0.000747) 0.502 (0.017) 0.302 (0.017) 0.004470 (0.001997)
DT2 [26] 0.405 (0.004) 0.336 (0.011) 0.002005 (0.000465) 0.423 (0.003) 0.283 (0.031) 0.005235 (0.000536)
DET only 0.500 (0.009) 0.367 (0.031) 0.001424 (0.000218) 0.392 (0.008) 0.286 (0.007) 0.003130 (0.000647)
DTT only 0.445 (0.004) 0.311 (0.006) 0.001260 (0.000476) 0.401 (0.074) 0.310 (0.009) 0.001795 (0.000720)
BDETT 0.443 (0.004) 0.306 (0.005) 0.001085 (0.000050) 0.498 (0.003) 0.301 (0.000) 0.001962 (0.000432)

8-bit
Loihi

weight

SAN 0.519 (0.005) 0.319 (0.006) 0.001106 (0.000992) 0.290 (0.005) 0.315 (0.009) 0.000961 (0.000543)
SAN-NR 0.510 (0.005) 0.336 (0.005) 0.001153 (0.000287) 0.478 (0.010) 0.317 (0.005) 0.005220 (0.001734)
DT1 [24] 0.435 (0.012) 0.318 (0.006) 0.001467 (0.000688) 0.472 (0.013) 0.327 (0.008) 0.001854 (0.000619)
DT2 [26] 0.411 (0.010) 0.339 (0.008) 0.001802 (0.000668) 0.428 (0.008) 0.317 (0.003) 0.005032 (0.000739)
DET only 0.504 (0.005) 0.341 (0.005) 0.000924 (0.000282) 0.387 (0.003) 0.288 (0.009) 0.002816 (0.000333)
DTT only 0.446 (0.003) 0.327 (0.010) 0.001302 (0.000434) 0.462 (0.013) 0.303 (0.002) 0.002038 (0.000477)
BDETT 0.439 (0.000) 0.308 (0.003) 0.001107 (0.000072) 0.502 (0.001) 0.297 (0.004) 0.002164 (0.000230)

GN
weight

(5 rounds)

SAN 0.503 (0.021) 0.340 (0.015) 0.001241 (0.000857) - - -
SAN-NR 0.488 (0.027) 0.340 (0.009) 0.001796 (0.000356) 0.499 (0.011) 0.328 (0.016) 0.004204 (0.000718)
DT1 [24] 0.413 (0.034) 0.346 (0.022) 0.002318 (0.000163) 0.491 (0.006) 0.320 (0.001) 0.003065 (0.000592)
DT2 [26] 0.390 (0.011) 0.336 (0.011) 0.001382 (0.001088) 0.411 (0.007) 0.292 (0.017) 0.008895 (0.003124)
DET only 0.516 (0.007) 0.372 (0.036) 0.002643 (0.001437) 0.397 (0.013) 0.218 (0.061) 0.003384 (0.000901)
DTT only 0.467 (0.018) 0.328 (0.011) 0.001352 (0.000384) 0.393 (0.082) 0.303 (0.002) 0.003581 (0.001066)
BDETT 0.444 (0.005) 0.318 (0.007) 0.001163 (0.000128) 0.498 (0.003) 0.300 (0.001) 0.001923 (0.000471)

30%
Zero

weight
(5 rounds)

SAN 0.443 (0.081) 0.320 (0.005) 0.000862 (0.001236) - - -
SAN-NR 0.457 (0.058) 0.338 (0.007) 0.002461 (0.001021) 0.472 (0.016) 0.332 (0.020) 0.009380 (0.005894)
DT1 [24] 0.388 (0.059) 0.312 (0.012) 0.001257 (0.000898) 0.456 (0.029) 0.334 (0.015) 0.005820 (0.003347)
DT2 [26] 0.372 (0.029) 0.359 (0.012) 0.001930 (0.000540) 0.403 (0.017) 0.332 (0.018) 0.003060 (0.002711)
DET only 0.524 (0.015) 0.368 (0.032) 0.002974 (0.001786) 0.360 (0.024) 0.245 (0.034) 0.004378 (0.001895)
DTT only 0.472 (0.023) 0.334 (0.017) 0.002013 (0.000277) 0.402 (0.073) 0.280 (0.021) 0.004420 (0.001905)
BDETT 0.446 (0.007) 0.316 (0.005) 0.001502 (0.000467) 0.488 (0.013) 0.316 (0.015) 0.004638 (0.002244)

Assessment—Ablation Studies

We conduct ablation studies to validate the effectiveness of the DET and DTT components of the proposed
BDETT. The results obtained under different degraded conditions are reported in the rows named “DET only”
and “DTT only” in Tables 1, 2, 3, and 4. The ablation study results are also illustrated in Figure 7. All listed
evaluations validate that the BDETT scheme performs better than any single component. The dynamic threshold
scheme with only one component cannot effectively regulate the firing rate statuses of the host SNNs, prohibiting
meaningful homeostasis. One extreme example is illustrated in Figure 7f. The ∆FRm changes induced under the
‘DTT only’ setting are the largest among all competing approaches under all experimental conditions. Notably,
when combined with the other component, the proposed BDETT provides the strongest homeostasis for the
host SNNs. This validates the biologically observed positive correlation encoded by the DET and the negative
correlation enforced by the DTT, which are equally essential for effectively maintaining the homeostasis of an
SNN.
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Supplementary Note 5: Additional Details on Continuous Control
Experiments—HalfCheetah-v3

Training

The adopted population-coded SAN (PopSAN) and its modified variants are trained by using the twin-delayed
deep deterministic policy gradient (TD3) off-policy algorithm [42] and the following hyperparameter settings:
D = 0.75 for the LIF; η = 0.01 and ψ = 6.0 for the DET; C = 3.0 for the DTT; and τs = τr = 1.0 for the
SRM. Compared to the settings of the obstacle avoidance tasks, the only different setting is the value of ψ for
the DET. Following the training protocol of the PopSAN, we set the batch size to 100 and the learning rates
to 0.0001 for both the actor and critic networks. The reward discount factor is set to 0.99, and the maximum
length of the replay buffer is set to 1 million. We use PyTorch [53] to train all competing SNNs with an i7-7700
CPU and an NVIDIA GTX 1080Ti GPU.

Figure 8: The experimental results obtained in the HalfCheetah-v3 tasks. a & b. The rewards obtained
under normal and different degraded conditions with T = 5 and T = 25 settings, respectively. ‘Base’
indicates the base condition; ‘RP’ indicates random joint position; ‘RV’ denotes random joint
velocity; ‘8-bit’, ‘GNW’, and ‘30%’ denote the 8-bit Loihi weights, GN weights, and 30% zero
weights, respectively. c & d. Homeostasis measurements obtained with the T = 5 setting for the LIF-
and SRM-based host SNNs, respectively. e & f. Homeostasis results obtained with the T = 25 setup
for the LIF- and SRM-based host SNNs, respectively.

Assessment—Reward

After determining the evaluation settings of the PopSAN [35], we train ten models corresponding to ten random
seeds, and the best-performing model is used for our assessments under different degraded conditions. In
particular, the best-performing model is evaluated ten times under each experimental condition, and the mean
reward of the ten evaluations represents the model’s performance. Each evaluation consists of ten episodes, and
each episode lasts for a maximum of 1000 execution steps. Table 7 shows the ten evaluations’ average rewards
and the corresponding standard deviations of all competing SNNs under a normal testing condition. Here, we
also present the quantitative performance achieved under the T = 5 and T = 25 settings. With both the LIF and
SRM models, the proposed BDETT offers the host SNNs the best rewards in all experimental settings under
normal testing conditions (i.e., the base conditions).
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Table 7: Quantitative Performance of Mujoco HalfCheetah-v3 Tasks under standard testing condition.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Name Reward↑ Reward↑ Reward↑ Reward↑
PopSAN 10989 (σ-49) 11268 (σ-149) 11137 (σ-70) 11247 (σ-132)
DT1 [24] 6572 (σ-85) 7085 (σ-69) 6438 (σ-102) 7001 (σ-82)
DT2 [26] 5110 (σ-30) 5262 (σ-77) 5523 (σ-67) 5311 (σ-113)
DET only 9794 (σ-107) 9694 (σ-112) 9704 (σ-125) 9619 (σ-105)
DTT only 10104 (σ-44) 10332 (σ-106) 10221 (σ-57) 10563 (σ-83)
BDETT 11064 (σ-28) 11960 (σ-86) 11209 (σ-56) 11956 (σ-95)

Unlike in the obstacle avoidance tasks, even with grid searches, the rewards offered by DT1 and DT2 are
significantly lower than those provided by the baseline PopSAN model. This indicates that dynamic threshold
schemes may perform worse than a simple static threshold, especially for heuristic-based schemes. More
importantly, we observe similar patterns in the obstacle avoidance tasks; the SRs offered by DT1 and DT2 are
lower than those of the baseline SAN-NR model in most experimental conditions.

Tables 8 and 9 show the quantitative performance of all competing approaches under degraded input and weight
uncertainty conditions, respectively. The results are also illustrated in Figures 8a and b for the T = 5 and
T = 25 settings, respectively. We provide a more detailed analysis for each degraded condition in the following.

Degraded Inputs In the HalfCheetah-v3 continuous control task, an observation (state) s represents 17-
dimensional data consisting of 8-dimensional joint position information and 9-dimensional joint velocity
information. Similar to the degraded input experiments conducted in the robot obstacle avoidance tasks, we
disturb a HalfCheetah-v3’s observations in three different ways. a) “Random joint position": for each episode,
one of the eight joint positions is randomly selected, and its original position is replaced by a random number
sampled from a Gaussian distribution N (0, 0.1). b) “Random joint velocity": we randomly select one of the
nine joint velocities in each episode and change its observed velocity to a random number sampled from a
Gaussian distributionN (0, 10.0). c) “GN": For each episode, we add Gaussian noise (i.e., sinput +N (0, 1.0),
as suggested in a study regarding LSTM-LMC [43]) to each of the 17 joint states. The average rewards obtained
from the ten evaluations conducted under these three different conditions are shown in Table 8.

Under all experimental settings, the proposed BDETT offers the host SNNs the highest rewards, significantly
improving upon the rewards of the baseline PopSAN model by at least 438 with T = 5, and 358 with T = 25.
Compared to the other two degraded input conditions, the “GN" condition disturbs all dimensions of the
HalfCheetah-v3 state. Therefore, we observe that the lowest rewards obtained by all host SNNs occur with the
“GN" setting. Even though the DT1 method hosted by an LIF-based SNN reduces the rewards of the baseline
PopSAN model by almost half, it outperforms the baseline model with both T settings under the “GN" condition.
Furthermore, the proposed BDETT provides the most stable performance, highlighted by it obtaining the smallest
standard deviations under all the degraded input settings.

Weight Uncertainty We leverage the same weight uncertainty conditions as those introduced in robot obstacle
avoidance experiments to demonstrate the effectiveness of all competing dynamic threshold schemes, and the
corresponding results are shown in Table 9. The proposed BDETT remains the best performer under the weight
uncertainty conditions. Note that the SRM-based BDETT outperforms other methods by significant margins
under the “GN weight" settings, highlighting that the proposed dynamic threshold scheme can effectively deal
with weight uncertainty errors. We also notice that the DT2 scheme produces the lowest rewards under all
experimental weight uncertainty settings, indicating that predefining a target firing rate does not work well with
weight uncertainty conditions. Surprisingly, even with low-precision 8-bit weights, the proposed BDETT helps
the SRM-based host SNN achieve higher rewards than those obtained with high-precision weights under the
T = 5 and T = 25 settings (11767 vs. 11268 with T = 5 and 11760 vs. 11247 with T = 25).

Assessment—Homeostatic

In the main manuscript, the changes in the quantified homeostasis values with respect to the base condition
(i.e., the normal Mujoco testing condition) under T = 5 are illustrated. The raw homeostasis measurements
and the corresponding changes used for plotting the polar chart in the main manuscript are reported in Table 10.
In addition, we also provide the experimental homeostasis results obtained under T = 25 in Table 11. The
corresponding polar plots obtained under the T = 5 and T = 25 setups are shown in Figures 8c-f.

The results are consistent with those obtained in the obstacle avoidance tasks. The proposed BDETT scheme
offers the strongest homeostasis, indicating the effectiveness of the proposed dynamic threshold scheme. The
essential goal of homeostasis is to enhance the host SNN’s performance. Therefore, we expect the SNNs with
stronger homeostasis (i.e., smaller ∆FRm, ∆FRm

std, and ∆FRs
std values) to outperform those with weaker

homeostasis. Our experimental results confirm this expectation.
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Table 8: Quantitative performance of Mujoco HalfCheetah-v3 tasks under degraded input conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name Reward↑ Reward↑ Reward↑ Reward↑

Random
joint

position

PopSAN 7832 (σ-222) 7120 (σ-214) 7947 (σ-253) 7167 (σ-197)
DT1 [24] 3923 (σ-204) 6830 (σ-140) 3835 (σ-248) 6792 (σ-157)
DT2 [26] 3750 (σ-171) 3230 (σ-239) 3950 (σ-192) 3213 (σ-230)
DET only 7954 (σ-103) 3582 (σ-284) 8051 (σ-148) 3502 (σ-323)
DTT only 6817 (σ-221) 7428 (σ-234) 6922 (σ-202) 7493 (σ-182)
BDETT 8465 (σ-121) 7883 (σ-78) 8463 (σ-130) 7846 (σ-70)

Random
joint

velocity

PopSAN 7020 (σ-146) 6576 (σ-147) 7223 (σ-165) 6583 (σ-168)
DT1 [24] 3187 (σ-142) 3836 (σ-181) 3203 (σ-148) 3855 (σ-202)
DT2 [26] 3395 (σ-209) 3031 (σ-239) 3506 (σ-208) 2965 (σ-241)
DET only 6664 (σ-179) 6392 (σ-206) 6498 (σ-219) 6435 (σ-213)
DTT only 7249 (σ-137) 6772 (σ-299) 7363 (σ-150) 6762 (σ-247)
BDETT 8302 (σ-84) 7116 (σ-146) 8422 (σ-94) 7127 (σ-131)

GN

PopSAN 2440 (σ-199) 3457 (σ-187) 2393 (σ-214) 3494 (σ-187)
DT1 [24] 2790 (σ-187) 2210 (σ-124) 2773 (σ-198) 2355 (σ-120)
DT2 [26] 1994 (σ-175) 2307 (σ-272) 2281 (σ-223) 2210 (σ-251)
DET only 2831 (σ-157) 3013 (σ-130) 2807 (σ-163) 3061 (σ-155)
DTT only 2974 (σ-194) 2851 (σ-81) 3281 (σ-173) 2855 (σ-115)
BDETT 3909 (σ-101) 3895 (σ-81) 3965 (σ-83) 3852 (σ-69)

Table 9: Quantitative performance of Mujoco HalfCheetah-v3 tasks under weight uncertainty condi-
tions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name Reward↑ Reward↑ Reward↑ Reward↑

8-bit
Loihi

weight

PopSAN 10728 (σ-47) 10802 (σ-32) 10926 (σ-59) 10850 (σ-44)
DT1 [24] 6026 (σ-63) 6569 (σ-46) 5883 (σ-102) 6420 (σ-97)
DT2 [26] 4372 (σ-54) 4629 (σ-50) 4301 (σ-87) 4636 (σ-74)
DET only 9455 (σ-125) 9398 (σ-60) 9474 (σ-137) 9376 (σ-82)
DTT only 9803 (σ-44) 9636 (σ-84) 9968 (σ-69) 9645 (σ-113)
BDETT 10823 (σ-37) 11767 (σ-45) 10990 (σ-61) 11760 (σ-68)

GN
weight

PopSAN 4640 (σ-510) 3583 (σ-347) 4816 (σ-583) 3597 (σ-426)
DT1 [24] 4483 (σ-491) 4128 (σ-754) 4365 (σ-466) 4051 (σ-760)
DT2 [26] 1334 (σ-616) 2028 (σ-1026) 1402 (σ-721) 1982 (σ-993)
DET only 5251 (σ-859) 5032 (σ-705) 5313 (σ-801) 5035 (σ-652)
DTT only 4013 (σ-423) 6250 (σ-368) 4238 (σ-468) 6327 (σ-403)
BDETT 6928 (σ-373) 8381 (σ-320) 6957 (σ-429) 8321 (σ-352)

30%
Zero

weight

PopSAN 5020 (σ-923) 3233 (σ-879) 5078 (σ-1031) 3304 (σ-950)
DT1 [24] 3995 (σ-1319) 3503 (σ-571) 3927 (σ-1406) 3484 (σ-772)
DT2 [26] 2721 (σ-1281) 3056 (σ-555) 2713 (σ-1352) 3002 (σ-582)
DET only 4436 (σ-801) 4682 (σ-540) 4406 (σ-822) 4692 (σ-515)
DTT only 3583 (σ-692) 3268 (σ-641) 3604 (σ-662) 3359 (σ-705)
BDETT 6551 (σ-679) 5386 (σ-443) 6619 (σ-712) 5474 (σ-388)

Assessment—Ablation Studies

The ablation study results are reported in the rows named “DET only” and “DTT only” in Tables 7, 8, and 9. In
addition, the results are illustrated in Figure 8. The results reflect the same facts that we observed in the obstacle
avoidance tasks. The dynamic threshold schemes with only the DET or DTT components cannot effectively
regulate the firing rate statuses of the host SNNs, prohibiting meaningful homeostasis. For the LIF-based host
SNNs, one extreme example is illustrated in the “30% Zero weight" sections of Figures 8c and e, where ‘DTT
only’ reports the largest change among all competing approaches under all experimental conditions in terms of
∆FRm

std. With the T = 25 setup, as shown in Figures 8d and f, the ∆FRm values of ‘DTT only’ in the “GN
weight" sections are the largest across all experimental settings.
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Table 10: The raw homeostasis measurements and the corresponding changes with respect to the
baseline condition in Mujoco HalfCheetah-v3 tasks with T = 5.

LIF (T = 5) SRM (T = 5)

Type Name FRm(∆) FRmstd(∆) FRsstd(∆) FRm(∆) FRmstd(∆) FRsstd(∆)

baseline
condition

PopSAN 0.433 0.228 0.000978 0.427 0.241 0.002146
DT1 [24] 0.412 0.239 0.001342 0.474 0.248 0.002166
DT2 [26] 0.697 0.298 0.000911 0.530 0.302 0.001472
DET only 0.284 0.220 0.001084 0.335 0.243 0.001558
DTT only 0.646 0.257 0.002291 0.501 0.334 0.002541
BDETT 0.249 0.190 0.001152 0.212 0.160 0.000952

Random
joint

position

PopSAN 0.426 (0.007) 0.237 (0.009) 0.001230 (0.000252) 0.440 (0.013) 0.258 (0.017) 0.002852 (0.000706)
DT1 [24] 0.435 (0.023) 0.252 (0.013) 0.001713 (0.000371) 0.426 (0.048) 0.269 (0.021) 0.004145 (0.001979)
DT2 [26] 0.686 (0.011) 0.289 (0.009) 0.001239 (0.000328) 0.508 (0.022) 0.333 (0.031) 0.002164 (0.000692)
DET only 0.289 (0.005) 0.227 (0.007) 0.001323 (0.000239) 0.347 (0.012) 0.261 (0.018) 0.002006 (0.000448)
DTT only 0.640 (0.006) 0.263 (0.006) 0.002077 (0.000214) 0.521 (0.020) 0.380 (0.046) 0.003124 (0.000583)
BDETT 0.246 (0.003) 0.186 (0.004) 0.001268 (0.000116) 0.209 (0.003) 0.152 (0.008) 0.001071 (0.000119)

Random
joint

velocity

PopSAN 0.439 (0.006) 0.240 (0.012) 0.001502 (0.000524) 0.453 (0.026) 0.314 (0.073) 0.001513 (0.000633)
DT1 [24] 0.381 (0.031) 0.259 (0.020) 0.002602 (0.001260) 0.510 (0.036) 0.261 (0.013) 0.004051 (0.001885)
DT2 [26] 0.690 (0.007) 0.289 (0.009) 0.001725 (0.000814) 0.487 (0.043) 0.340 (0.038) 0.001896 (0.000424)
DET only 0.280 (0.004) 0.214 (0.006) 0.000905 (0.000179) 0.351 (0.016) 0.219 (0.024) 0.001846 (0.000288)
DTT only 0.656 (0.010) 0.246 (0.011) 0.002027 (0.000264) 0.550 (0.049) 0.355 (0.021) 0.002891 (0.000350)
BDETT 0.245 (0.004) 0.186 (0.004) 0.001336 (0.000184) 0.204 (0.008) 0.168 (0.008) 0.001104 (0.000152)

GN

PopSAN 0.418 (0.015) 0.243 (0.015) 0.001400 (0.000422) 0.476 (0.049) 0.221 (0.020) 0.002481 (0.000335)
DT1 [24] 0.423 (0.011) 0.225 (0.014) 0.001623 (0.000281) 0.535 (0.061) 0.283 (0.035) 0.004810 (0.002644)
DT2 [26] 0.680 (0.017) 0.312 (0.014) 0.001273 (0.000362) 0.481 (0.049) 0.362 (0.060) 0.002215 (0.000743)
DET only 0.278 (0.006) 0.212 (0.008) 0.001353 (0.000269) 0.302 (0.033) 0.277 (0.034) 0.002411 (0.000853)
DTT only 0.638 (0.008) 0.269 (0.012) 0.002448 (0.000157) 0.434 (0.067) 0.301 (0.033) 0.002062 (0.000479)
BDETT 0.245 (0.004) 0.184 (0.006) 0.001300 (0.000148) 0.225 (0.013) 0.171 (0.011) 0.001093 (0.000141)

8-bit
Loihi

weight

PopSAN 0.430 (0.003) 0.221 (0.007) 0.001061 (0.000083) 0.420 (0.007) 0.252 (0.011) 0.001847 (0.000299)
DT1 [24] 0.424 (0.012) 0.248 (0.009) 0.001285 (0.000057) 0.442 (0.032) 0.230 (0.018) 0.002520 (0.000354)
DT2 [26] 0.678 (0.019) 0.285 (0.013) 0.001022 (0.000111) 0.492 (0.038) 0.320 (0.018) 0.001701 (0.000229)
DET only 0.290 (0.006) 0.229 (0.009) 0.001211 (0.000127) 0.327 (0.008) 0.235 (0.008) 0.001303 (0.000255)
DTT only 0.655 (0.009) 0.264 (0.007) 0.002402 (0.000111) 0.488 (0.013) 0.343 (0.009) 0.002707 (0.000166)
BDETT 0.249 (0.000) 0.186 (0.004) 0.001114 (0.000038) 0.215 (0.003) 0.163 (0.003) 0.000907 (0.000045)

GN
weight

PopSAN 0.456 (0.023) 0.210 (0.018) 0.001249 (0.000271) 0.464 (0.037) 0.305 (0.064) 0.003358 (0.001212)
DT1 [24] 0.426 (0.014) 0.223 (0.016) 0.001004 (0.000338) 0.429 (0.045) 0.285 (0.037) 0.003702 (0.001536)
DT2 [26] 0.678 (0.019) 0.316 (0.018) 0.001381 (0.000470) 0.503 (0.027) 0.362 (0.060) 0.002172 (0.000700)
DET only 0.271 (0.013) 0.227 (0.007) 0.001385 (0.000301) 0.364 (0.029) 0.208 (0.035) 0.001042 (0.000516)
DTT only 0.626 (0.020) 0.281 (0.024) 0.001972 (0.000319) 0.562 (0.061) 0.287 (0.047) 0.004133 (0.001592)
BDETT 0.256 (0.007) 0.185 (0.005) 0.001264 (0.000112) 0.219 (0.007) 0.165 (0.005) 0.001049 (0.000097)

30%
Zero

weight

PopSAN 0.502 (0.069) 0.220 (0.008) 0.001441 (0.000463) 0.412 (0.015) 0.279 (0.038) 0.003522 (0.001376)
DT1 [24] 0.439 (0.027) 0.256 (0.017) 0.001784 (0.000442) 0.436 (0.038) 0.263 (0.015) 0.001216 (0.000950)
DT2 [26] 0.675 (0.022) 0.325 (0.027) 0.001327 (0.000416) 0.472 (0.058) 0.258 (0.044) 0.000994 (0.000478)
DET only 0.268 (0.016) 0.210 (0.010) 0.001329 (0.000245) 0.370 (0.035) 0.210 (0.033) 0.003205 (0.001647)
DTT only 0.680 (0.034) 0.338 (0.081) 0.002804 (0.000513) 0.485 (0.016) 0.317 (0.017) 0.001024 (0.001517)
BDETT 0.243 (0.006) 0.184 (0.006) 0.001306 (0.000154) 0.217 (0.005) 0.154 (0.006) 0.001058 (0.000106)
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Table 11: The raw homeostasis measurements and the corresponding changes with respect to the
baseline condition in Mujoco HalfCheetah-v3 tasks with the T = 25 setup.

LIF (T = 25) SRM (T = 25)

Type Name FRm(∆) FRmstd(∆) FRsstd(∆) FRm(∆) FRmstd(∆) FRsstd(∆)

baseline
condition

PopSAN 0.436 0.230 0.001156 0.440 0.252 0.002217
DT1 [24] 0.420 0.240 0.001158 0.470 0.247 0.001869
DT2 [26] 0.676 0.290 0.000939 0.521 0.305 0.001785
DET only 0.292 0.225 0.001237 0.341 0.253 0.001631
DTT only 0.635 0.257 0.002433 0.493 0.340 0.002722
BDETT 0.251 0.192 0.001292 0.215 0.173 0.001074

Random
joint

position

PopSAN 0.426 (0.010) 0.238 (0.008) 0.001381 (0.000225) 0.458 (0.018) 0.264 (0.012) 0.003048 (0.000831)
DT1 [24] 0.440 (0.020) 0.258 (0.018) 0.001721 (0.000563) 0.442 (0.028) 0.268 (0.021) 0.003632 (0.001763)
DT2 [26] 0.648 (0.028) 0.272 (0.018) 0.001348 (0.000409) 0.501 (0.020) 0.342 (0.037) 0.002384 (0.000599)
DET only 0.301 (0.009) 0.236 (0.011) 0.001464 (0.000227) 0.359 (0.018) 0.285 (0.032) 0.002179 (0.000548)
DTT only 0.630 (0.005) 0.265 (0.008) 0.002104 (0.000329) 0.518 (0.025) 0.372 (0.032) 0.003438 (0.000716)
BDETT 0.247 (0.004) 0.187 (0.005) 0.001431 (0.000139) 0.210 (0.005) 0.163 (0.010) 0.001242 (0.000168)

Random
joint

velocity

PopSAN 0.450 (0.014) 0.239 (0.009) 0.001425 (0.000269) 0.474 (0.034) 0.332 (0.080) 0.002922 (0.000705)
DT1 [24] 0.387 (0.033) 0.258 (0.018) 0.002474 (0.001316) 0.427 (0.043) 0.268 (0.021) 0.003572 (0.001703)
DT2 [26] 0.664 (0.012) 0.261 (0.029) 0.002582 (0.001643) 0.487 (0.034) 0.347 (0.042) 0.002529 (0.000744)
DET only 0.310 (0.018) 0.235 (0.010) 0.001582 (0.000345) 0.368 (0.027) 0.292 (0.039) 0.002544 (0.000913)
DTT only 0.627 (0.008) 0.269 (0.012) 0.001548 (0.000885) 0.515 (0.022) 0.370 (0.030) 0.003282 (0.000560)
BDETT 0.245 (0.006) 0.185 (0.007) 0.001478 (0.000186) 0.208 (0.007) 0.183 (0.010) 0.001305 (0.000231)

GN

PopSAN 0.423 (0.013) 0.252 (0.022) 0.001633 (0.000477) 0.403 (0.037) 0.236 (0.016) 0.002574 (0.000357)
DT1 [24] 0.433 (0.013) 0.221 (0.019) 0.002061 (0.000903) 0.552 (0.082) 0.271 (0.024) 0.003784 (0.001915)
DT2 [26] 0.642 (0.034) 0.310 (0.020) 0.001385 (0.000446) 0.480 (0.041) 0.373 (0.068) 0.002833 (0.001048)
DET only 0.281 (0.011) 0.219 (0.006) 0.001610 (0.000373) 0.304 (0.037) 0.290 (0.037) 0.003082 (0.001451)
DTT only 0.622 (0.013) 0.274 (0.017) 0.002762 (0.000329) 0.453 (0.040) 0.305 (0.035) 0.002048 (0.000674)
BDETT 0.243 (0.008) 0.184 (0.008) 0.001512 (0.000220) 0.226 (0.011) 0.180 (0.007) 0.001283 (0.000209)

8-bit
Loihi

weight

PopSAN 0.432 (0.004) 0.224 (0.006) 0.001310 (0.000154) 0.452 (0.012) 0.238 (0.014) 0.001849 (0.000368)
DT1 [24] 0.427 (0.007) 0.221 (0.019) 0.001035 (0.000123) 0.485 (0.015) 0.259 (0.012) 0.002363 (0.000494)
DT2 [26] 0.661 (0.015) 0.278 (0.012) 0.001174 (0.000235) 0.535 (0.014) 0.328 (0.023) 0.001976 (0.000191)
DET only 0.299 (0.007) 0.234 (0.009) 0.001379 (0.000142) 0.351 (0.010) 0.267 (0.014) 0.001275 (0.000356)
DTT only 0.644 (0.009) 0.242 (0.015) 0.002210 (0.000223) 0.506 (0.013) 0.354 (0.014) 0.002894 (0.000172)
BDETT 0.250 (0.001) 0.197 (0.005) 0.001393 (0.000101) 0.211 (0.004) 0.178 (0.005) 0.001169 (0.000094)

GN
weight

PopSAN 0.471 (0.035) 0.211 (0.019) 0.001637 (0.000481) 0.479 (0.039) 0.336 (0.084) 0.003181 (0.000964)
DT1 [24] 0.433 (0.013) 0.218 (0.022) 0.000904 (0.000254) 0.438 (0.032) 0.302 (0.055) 0.004041 (0.002172)
DT2 [26] 0.642 (0.034) 0.320 (0.030) 0.001683 (0.000744) 0.492 (0.029) 0.366 (0.061) 0.004585 (0.002800)
DET only 0.271 (0.021) 0.238 (0.013) 0.001720 (0.000483) 0.369 (0.028) 0.202 (0.051) 0.003927 (0.002296)
DTT only 0.607 (0.028) 0.289 (0.032) 0.003104 (0.000671) 0.569 (0.076) 0.301 (0.039) 0.004273 (0.001551)
BDETT 0.264 (0.013) 0.183 (0.009) 0.001512 (0.000220) 0.229 (0.014) 0.182 (0.009) 0.001199 (0.000125)

30%
Zero

weight

PopSAN 0.493 (0.057) 0.215 (0.015) 0.001892 (0.000736) 0.410 (0.030) 0.292 (0.040) 0.003237 (0.001020)
DT1 [24] 0.447 (0.027) 0.258 (0.018) 0.001859 (0.000701) 0.424 (0.046) 0.288 (0.041) 0.000926 (0.000943)
DT2 [26] 0.655 (0.021) 0.334 (0.044) 0.001674 (0.000735) 0.486 (0.035) 0.251 (0.054) 0.000896 (0.000889)
DET only 0.273 (0.019) 0.239 (0.014) 0.001692 (0.000455) 0.371 (0.030) 0.216 (0.037) 0.004106 (0.002475)
DTT only 0.677 (0.042) 0.305 (0.048) 0.002976 (0.000543) 0.426 (0.067) 0.312 (0.028) 0.001176 (0.001546)
BDETT 0.239 (0.012) 0.181 (0.011) 0.001642 (0.000350) 0.221 (0.006) 0.180 (0.007) 0.001183 (0.000109)
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Supplementary Note 6: Additional Details on Continuous Control
Experiments—Ant-v3

The training and experimental setups are the same as those used for the HalfCheetah-v3 tasks.

Figure 9: The experimental results obtained in the Ant-v3 tasks. a & b. The rewards obtained under
normal and different degraded conditions under the T = 5 and T = 25 settings, respectively. ‘Base’
denotes the base condition; ‘RP’ and ‘RV’ represent random joint position and random joint velocity,
respectively; ‘8-bit’, ‘GNW’, and ‘30%’ denote the 8-bit Loihi weights, GN weights, and 30% zero
weights, respectively. c & d. Homeostasis measurements obtained under the T = 5 setting for the
LIF- and SRM-based host SNNs, respectively. e & f. Homeostasis results obtained with the T = 25
setup for the LIF- and SRM-based host SNNs, respectively.

Assessment—Reward

As in the HalfCheetah-v3 tasks, we present the rewards of all competing host SNNs under the original normal
conditions with the T = 5 and T = 25 settings; see Table 12. Compared to HalfCheetah-v3’s 17-dimensional
state, the state of an Ant-v3 task has 111 dimensions. Thus, the rewards obtained from the Ant-v3 experiments
are much lower than those obtained in the HalfCheetah-v3 tasks. Nevertheless, the proposed BDETT offers
the highest rewards in the Ant-v3 tasks, and it improves upon the rewards of the LIF- and SRM-based baseline
models by at least 173 and 236, respectively.

Relative to the HalfCheetah-v3 tasks, DT1 offers much better rewards in the Ant-v3 tasks under normal conditions.
However, the rewards provided by DT1 and DT2 are still lower than those of the baseline PopSAN model. This
observation is consistent with those obtained in the obstacle avoidance and HalfCheetah-v3 experiments.

We show the quantitative performance of all competing methods under degraded input and weight uncertainty
conditions in Tables 13 and 14, respectively. In Figures 9a and b, we also intuitively present the results. The
proposed BDETT is still the best performer under all experimental conditions based on the obtained results. A
more detailed analysis for each degraded condition is provided in the following.

Degraded Inputs Compared to that of a HalfCheetah-v3 agent, the observation (state) of an Ant-v3 agent s
represents a 111-dimensional data consisting of 13-dimensional joint position information, 14-dimensional joint
velocity information, and 84-dimensional contact force data. We disturb Ant-v3’s observation in the same three
ways introduced in the HalfCheetah-v3 tasks: “Random joint position", “Random joint velocity", and “GN".
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Table 12: Quantitative performance of Mujoco Ant-v3 tasks under standard testing condition.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Name Reward↑ Reward↑ Reward↑ Reward↑
PopSAN 5526 (σ-81) 5643 (σ-84) 5711 (σ-105) 5612 (σ-105)
DT1 [24] 5272 (σ-142) 5179 (σ-157) 5218 (σ-164) 5121 (σ-117)
DT2 [26] 3454 (σ-183) 3925 (σ-483) 3628 (σ-180) 4016 (σ-445)
DET only 4836 (σ-82) 4971 (σ-128) 4957 (σ-113) 5125 (σ-144)
DTT only 5041 (σ-294) 4883 (σ-154) 5192 (σ-267) 4864 (σ-187)
BDETT 5726 (σ-61) 5879 (σ-117) 5884 (σ-97) 5942 (σ-136)

Table 13: Quantitative performance of Mujoco Ant-v3 tasks under degraded input conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name Reward↑ Reward↑ Reward↑ Reward↑

Random
joint

position

PopSAN 2503 (σ-503) 3004 (σ-131) 2544 (σ-337) 3036 (σ-152)
DT1 [24] 1435 (σ-130) 1333 (σ-122) 1380 (σ-158) 1258 (σ-150)
DT2 [26] 1280 (σ-234) 1330 (σ-99) 1335 (σ-206) 1364 (σ-152)
DET only 2907 (σ-320) 2836 (σ-392) 2862 (σ-342) 2994 (σ-332)
DTT only 2213 (σ-389) 2190 (σ-119) 2305 (σ-373) 2273 (σ-162)
BDETT 3339 (σ-111) 3450 (σ-75) 3320 (σ-126) 3427 (σ-115)

Random
joint

velocity

PopSAN 2890 (σ-115) 2372 (σ-390) 2858 (σ-149) 2287 (σ-427)
DT1 [24] 2628 (σ-232) 2508 (σ-166) 2643 (σ-259) 2574 (σ-232)
DT2 [26] 1579 (σ-89) 1025 (σ-139) 1595 (σ-131) 1009 (σ-208)
DET only 2720 (σ-365) 2809 (σ-296) 2802 (σ-197) 2896 (σ-372)
DTT only 2635 (σ-234) 2515 (σ-201) 2699 (σ-255) 2618 (σ-260)
BDETT 3103 (σ-95) 2984 (σ-176) 3217 (σ-119) 2996 (σ-195)

GN

PopSAN 977 (σ-320) 1031 (σ-212) 1022 (σ-358) 1059 (σ-217)
DT1 [24] 922 (σ-234) 958 (σ-156) 875 (σ-270) 1012 (σ-178)
DT2 [26] 560 (σ-179) 583 (σ-158) 664 (σ-163) 623 (σ-235)
DET only 782 (σ-246) 1048 (σ-345) 844 (σ-304) 1105 (σ-364)
DTT only 849 (σ-177) 1172 (σ-209) 906 (σ-170) 1255 (σ-218)
BDETT 1269 (σ-166) 1559 (σ-138) 1339 (σ-156) 1576 (σ-161)

The average rewards obtained in the ten evaluations conducted under these three different conditions are shown
in Table 13. Under all experimental settings, the proposed BDETT offers the host SNNs the highest rewards,
significantly improving upon the reward of the baseline PopSAN model by at least 213.

Weight Uncertainty We leverage the same weight uncertainty conditions as those used in the robot obstacle
avoidance and HalfCheetah-v3 experiments. The experimental results are shown in Table 14. The proposed
BDETT remains the best performer under all weight uncertainty conditions. As in the HalfCheetah-v3 experi-
ments, even with low-precision 8-bit weights, the proposed BDETT helps both the LIF- and SRM-based host
SNNs achieve higher rewards than those offered by the baseline counterparts with high-precision floating-point
weights under T = 5 (i.e., 5570 vs. 5526 and 5648 vs. 5643, respectively). With the T = 25 setup, the
SRM-based host SNN exhibits the same pattern.

Assessment—Homeostatic

The raw homeostasis measurements obtained with both T=5 and T=25 are provided in Tables 15 and 16,
respectively. The corresponding homeostasis plots are shown in Figures 9c-f.

The homeostasis results obtained in the Ant-v3 tasks demonstrate the effectiveness of the proposed BDETT in
terms of regulating the neuronal firing rates of the host SNNs, inducing minimal changes in all three metrics
when transferring from the base conditions to all other experimental settings. We witness that the strongest
homeostasis again provides the highest rewards.

Assessment—Ablation Studies

The experimental results obtained in the Ant-v3 task ablation studies under different conditions are reported
in the rows named ‘DET only’ and ‘DTT only’ in Tables 12, 13, and 14. All listed evaluations validate that
the BDETT scheme performs better than any single component. As shown in Table 14, under the “GN weight"
condition, both ‘DET only’ and ‘DTT only’ offer both the LIF- and SRM-based host SNNs higher rewards than
the other competing dynamic threshold schemes. As in the other tasks, the dynamic threshold scheme with only
one component cannot effectively regulate the firing rate statuses of the host SNNs, prohibiting meaningful
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Table 14: Quantitative performance of Mujoco Ant-v3 tasks with weight uncertainty conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name Reward↑ Reward↑ Reward↑ Reward↑

8-bit
Loihi

weight

PopSAN 5347 (σ-175) 5285 (σ-158) 5504 (σ-210) 5228 (σ-139)
DT1 [24] 5004 (σ-88) 4889 (σ-163) 4826 (σ-102) 4902 (σ-182)
DT2 [26] 3122 (σ-77) 3463 (σ-99) 3266 (σ-93) 3676 (σ-86)
DET only 4561 (σ-135) 4634 (σ-111) 4663 (σ-156) 4727 (σ-153)
DTT only 4703 (σ-56) 4722 (σ-87) 4903 (σ-63) 4779 (σ-126)
BDETT 5570 (σ-59) 5648 (σ-73) 5606 (σ-52) 5620 (σ-143)

GN
weight

PopSAN 637 (σ-860) 467 (σ-951) 667 (σ-1002) 444 (σ-1105)
DT1 [24] 221 (σ-949) -57 (σ-1245) 155 (σ-839) 6 (σ-1722)
DT2 [26] -265 (σ-488) -173 (σ-640) -226 (σ-628) -198 (σ-883)
DET only 1208 (σ-855) 940 (σ-750) 1258 (σ-638) 923 (σ-883)
DTT only 1392 (σ-467) 1204 (σ-746) 1448 (σ-644) 1310 (σ-867)
BDETT 2782 (σ-599) 1658 (σ-640) 2780 (σ-621) 1669 (σ-612)

30%
Zero

weight

PopSAN 287 (σ-524) 372 (σ-994) 273 (σ-633) 407 (σ-959)
DT1 [24] 1247 (σ-801) 1450 (σ-863) 1200 (σ-1020) 1552 (σ-996)
DT2 [26] -548 (σ-354) -203 (σ-901) -563 (σ-743) -183 (σ-1125)
DET only 1007 (σ-960) 1136 (σ-1179) 1084 (σ-1092) 1186 (σ-1084)
DTT only 908 (σ-428) 1559 (σ-1167) 1038 (σ-487) 1563 (σ-1049)
BDETT 2931 (σ-544) 3046 (σ-886) 2978 (σ-605) 3152 (σ-924)

Table 15: The raw homeostasis measurements and the corresponding changes with respect to the
baseline condition in Mujoco Ant-v3 tasks with the T = 5 setting.

LIF (T = 5) SRM (T = 5)

Type Name FRm(∆) FRmstd(∆) FRsstd(∆) FRm(∆) FRmstd(∆) FRsstd(∆)

baseline
condition

PopSAN 0.548 0.262 0.002169 0.197 0.150 0.001823
DT1 [24] 0.531 0.253 0.002483 0.446 0.251 0.002172
DT2 [26] 0.770 0.223 0.004427 0.580 0.167 0.003238
DET only 0.289 0.246 0.001820 0.328 0.187 0.002027
DTT only 0.547 0.280 0.001554 0.443 0.276 0.002942
BDETT 0.271 0.204 0.001325 0.213 0.199 0.001535

Random
joint

position

PopSAN 0.556 (0.008) 0.242 (0.020) 0.003210 (0.001041) 0.208 (0.011) 0.134 (0.016) 0.003022 (0.001199)
DT1 [24] 0.521 (0.010) 0.209 (0.044) 0.002859 (0.000376) 0.420 (0.026) 0.275 (0.024) 0.002819 (0.000647)
DT2 [26] 0.757 (0.013) 0.211 (0.012) 0.002735 (0.001692) 0.529 (0.051) 0.188 (0.021) 0.002521 (0.000717)
DET only 0.262 (0.027) 0.270 (0.024) 0.002575 (0.000755) 0.339 (0.011) 0.210 (0.023) 0.002831 (0.000804)
DTT only 0.519 (0.028) 0.256 (0.024) 0.002481 (0.000927) 0.430 (0.013) 0.244 (0.032) 0.002454 (0.000488)
BDETT 0.275 (0.004) 0.209 (0.005) 0.001240 (0.000085) 0.207 (0.006) 0.192 (0.007) 0.001308 (0.000227)

Random
joint

velocity

PopSAN 0.526 (0.022) 0.223 (0.039) 0.001743 (0.000426) 0.180 (0.017) 0.117 (0.033) 0.003239 (0.001416)
DT1 [24] 0.516 (0.015) 0.221 (0.032) 0.003031 (0.000548) 0.415 (0.031) 0.278 (0.027) 0.002766 (0.000594)
DT2 [26] 0.760 (0.010) 0.220 (0.003) 0.003049 (0.001378) 0.534 (0.046) 0.182 (0.015) 0.002749 (0.000489)
DET only 0.265 (0.024) 0.266 (0.020) 0.001443 (0.000377) 0.345 (0.017) 0.206 (0.019) 0.003182 (0.001155)
DTT only 0.524 (0.023) 0.251 (0.029) 0.003020 (0.001466) 0.410 (0.033) 0.225 (0.051) 0.002385 (0.000557)
BDETT 0.265 (0.006) 0.206 (0.002) 0.001452 (0.000127) 0.207 (0.006) 0.193 (0.006) 0.001882 (0.000347)

GN

PopSAN 0.560 (0.012) 0.244 (0.018) 0.004782 (0.002613) 0.180 (0.017) 0.123 (0.027) 0.002589 (0.000766)
DT1 [24] 0.515 (0.016) 0.229 (0.024) 0.002723 (0.000240) 0.470 (0.024) 0.289 (0.038) 0.003259 (0.001087)
DT2 [26] 0.727 (0.043) 0.238 (0.015) 0.002130 (0.002297) 0.527 (0.053) 0.204 (0.037) 0.004192 (0.000954)
DET only 0.302 (0.013) 0.260 (0.014) 0.003762 (0.001942) 0.312 (0.016) 0.161 (0.026) 0.002495 (0.000468)
DTT only 0.506 (0.041) 0.241 (0.039) 0.003306 (0.001752) 0.390 (0.053) 0.320 (0.044) 0.004334 (0.001392)
BDETT 0.262 (0.009) 0.198 (0.006) 0.001539 (0.000214) 0.198 (0.015) 0.178 (0.021) 0.002068 (0.000533)

8-bit
Loihi

weight

PopSAN 0.540 (0.008) 0.269 (0.007) 0.001838 (0.000331) 0.206 (0.009) 0.167 (0.017) 0.001602 (0.000221)
DT1 [24] 0.519 (0.012) 0.261 (0.008) 0.002217 (0.000266) 0.459 (0.013) 0.237 (0.014) 0.002406 (0.000234)
DT2 [26] 0.758 (0.012) 0.217 (0.006) 0.003884 (0.000543) 0.566 (0.014) 0.193 (0.026) 0.002513 (0.000725)
DET only 0.281 (0.008) 0.250 (0.004) 0.001933 (0.000113) 0.323 (0.005) 0.194 (0.007) 0.001869 (0.000158)
DTT only 0.539 (0.008) 0.286 (0.006) 0.001463 (0.000091) 0.433 (0.010) 0.285 (0.009) 0.003206 (0.000264)
BDETT 0.274 (0.003) 0.206 (0.002) 0.001280 (0.000045) 0.215 (0.002) 0.203 (0.004) 0.001602 (0.000067)

GN
weight

PopSAN 0.507 (0.041) 0.291 (0.029) 0.003844 (0.001675) 0.190 (0.007) 0.138 (0.012) 0.004859 (0.003036)
DT1 [24] 0.475 (0.056) 0.261 (0.008) 0.004749 (0.002266) 0.519 (0.073) 0.328 (0.077) 0.003441 (0.001269)
DT2 [26] 0.722 (0.048) 0.305 (0.082) 0.003632 (0.000795) 0.503 (0.077) 0.212 (0.045) 0.004833 (0.001595)
DET only 0.242 (0.047) 0.218 (0.028) 0.000966 (0.000854) 0.402 (0.074) 0.209 (0.022) 0.003346 (0.001319)
DTT only 0.520 (0.027) 0.223 (0.057) 0.004540 (0.002986) 0.408 (0.035) 0.322 (0.046) 0.004416 (0.001474)
BDETT 0.268 (0.003) 0.208 (0.004) 0.001548 (0.000223) 0.208 (0.005) 0.190 (0.009) 0.002351 (0.000816)

30%
Zero

weight

PopSAN 0.488 (0.060) 0.290 (0.028) 0.006801 (0.004632) 0.140 (0.057) 0.130 (0.020) 0.004246 (0.002423)
DT1 [24] 0.460 (0.071) 0.328 (0.075) 0.004668 (0.002185) 0.411 (0.035) 0.223 (0.028) 0.003402 (0.001230)
DT2 [26] 0.696 (0.074) 0.326 (0.103) 0.002308 (0.002119) 0.511 (0.069) 0.203 (0.036) 0.004283 (0.001045)
DET only 0.250 (0.039) 0.279 (0.033) 0.001023 (0.000797) 0.364 (0.036) 0.213 (0.026) 0.003631 (0.001604)
DTT only 0.566 (0.019) 0.308 (0.028) 0.003243 (0.001689) 0.465 (0.022) 0.268 (0.008) 0.003563 (0.000621)
BDETT 0.258 (0.013) 0.217 (0.013) 0.001840 (0.000515) 0.194 (0.019) 0.191 (0.008) 0.002276 (0.000741)
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Table 16: The raw homeostasis measurements and the corresponding changes with respect to the
baseline condition in Mujoco Ant-v3 tasks with the T = 25 setup.

LIF (T = 25) SRM (T = 25)

Type Name FRm(∆) FRmstd(∆) FRsstd(∆) FRm(∆) FRmstd(∆) FRsstd(∆)

baseline
condition

PopSAN 0.535 0.258 0.002247 0.213 0.166 0.002027
DT1 [24] 0.530 0.252 0.002688 0.453 0.244 0.001694
DT2 [26] 0.753 0.230 0.004728 0.563 0.182 0.003493
DET only 0.302 0.250 0.001947 0.334 0.192 0.001872
DTT only 0.541 0.276 0.001526 0.451 0.281 0.002485
BDETT 0.275 0.204 0.001503 0.222 0.195 0.001829

Random
joint

position

PopSAN 0.549 (0.014) 0.242 (0.016) 0.003794 (0.001547) 0.248 (0.035) 0.140 (0.026) 0.003682 (0.001655)
DT1 [24] 0.522 (0.008) 0.223 (0.029) 0.003074 (0.000386) 0.426 (0.027) 0.277 (0.033) 0.002951 (0.001257)
DT2 [26] 0.692 (0.061) 0.211 (0.019) 0.003076 (0.001652) 0.513 (0.050) 0.219 (0.037) 0.002523 (0.000970)
DET only 0.276 (0.026) 0.286 (0.036) 0.002744 (0.000797) 0.352 (0.018) 0.224 (0.032) 0.002642 (0.000770)
DTT only 0.520 (0.021) 0.252 (0.024) 0.002636 (0.001110) 0.430 (0.021) 0.246 (0.035) 0.002206 (0.000279)
BDETT 0.280 (0.005) 0.210 (0.006) 0.001386 (0.000117) 0.216 (0.006) 0.188 (0.007) 0.001682 (0.000147)

Random
joint

velocity

PopSAN 0.510 (0.025) 0.224 (0.034) 0.001589 (0.000658) 0.189 (0.024) 0.121 (0.045) 0.003472 (0.001445)
DT1 [24] 0.510 (0.020) 0.220 (0.032) 0.003236 (0.000548) 0.424 (0.029) 0.281 (0.037) 0.002692 (0.000998)
DT2 [26] 0.688 (0.065) 0.203 (0.027) 0.003163 (0.001565) 0.522 (0.041) 0.220 (0.038) 0.002732 (0.000761)
DET only 0.263 (0.039) 0.294 (0.044) 0.002583 (0.000636) 0.353 (0.019) 0.209 (0.017) 0.003135 (0.001263)
DTT only 0.522 (0.019) 0.259 (0.017) 0.002184 (0.000658) 0.426 (0.025) 0.252 (0.029) 0.001921 (0.000564)
BDETT 0.267 (0.008) 0.206 (0.002) 0.001632 (0.000129) 0.213 (0.009) 0.190 (0.005) 0.002005 (0.000176)

GN

PopSAN 0.572 (0.037) 0.240 (0.018) 0.004581 (0.002334) 0.180 (0.033) 0.120 (0.046) 0.003148 (0.001121)
DT1 [24] 0.512 (0.018) 0.214 (0.038) 0.002012 (0.000676) 0.633 (0.018) 0.269 (0.025) 0.002885 (0.001191)
DT2 [26] 0.718 (0.035) 0.259 (0.029) 0.002833 (0.001895) 0.520 (0.043) 0.232 (0.050) 0.002148 (0.001345)
DET only 0.323 (0.021) 0.299 (0.049) 0.003665 (0.001718) 0.305 (0.029) 0.169 (0.023) 0.002684 (0.000812)
DTT only 0.512 (0.029) 0.244 (0.032) 0.003522 (0.001996) 0.412 (0.039) 0.328 (0.047) 0.003144 (0.000659)
BDETT 0.264 (0.011) 0.200 (0.004) 0.001400 (0.000103) 0.204 (0.018) 0.177 (0.018) 0.002129 (0.000300)

8-bit
Loihi

weight

PopSAN 0.546 (0.011) 0.275 (0.017) 0.002569 (0.000322) 0.225 (0.012) 0.179 (0.013) 0.002581 (0.000554)
DT1 [24] 0.542 (0.012) 0.264 (0.012) 0.003189 (0.000501) 0.421 (0.032) 0.257 (0.013) 0.001184 (0.000510)
DT2 [26] 0.738 (0.015) 0.220 (0.010) 0.003680 (0.001048) 0.545 (0.018) 0.194 (0.012) 0.003026 (0.000467)
DET only 0.316 (0.014) 0.236 (0.014) 0.002292 (0.000345) 0.346 (0.012) 0.212 (0.020) 0.002214 (0.000342)
DTT only 0.554 (0.013) 0.290 (0.014) 0.001174 (0.000352) 0.438 (0.013) 0.294 (0.013) 0.002763 (0.000278)
BDETT 0.270 (0.005) 0.200 (0.004) 0.001576 (0.000073) 0.218 (0.004) 0.199 (0.004) 0.001722 (0.000107)

GN
weight

PopSAN 0.493 (0.042) 0.295 (0.037) 0.003726 (0.001479) 0.190 (0.023) 0.141 (0.025) 0.005216 (0.003189)
DT1 [24] 0.482 (0.048) 0.277 (0.025) 0.004663 (0.001975) 0.522 (0.069) 0.287 (0.043) 0.003540 (0.001846)
DT2 [26] 0.715 (0.038) 0.286 (0.056) 0.003431 (0.001297) 0.486 (0.077) 0.235 (0.053) 0.004632 (0.001139)
DET only 0.257 (0.045) 0.215 (0.035) 0.001036 (0.000911) 0.394 (0.060) 0.227 (0.035) 0.003373 (0.001501)
DTT only 0.518 (0.023) 0.223 (0.053) 0.003998 (0.002472) 0.410 (0.041) 0.342 (0.061) 0.004025 (0.001540)
BDETT 0.265 (0.010) 0.211 (0.007) 0.001729 (0.000226) 0.212 (0.010) 0.206 (0.011) 0.002773 (0.000944)

30%
Zero

weight

PopSAN 0.510 (0.025) 0.288 (0.030) 0.005942 (0.003695) 0.168 (0.045) 0.137 (0.029) 0.004893 (0.002866)
DT1 [24] 0.457 (0.073) 0.307 (0.055) 0.004043 (0.001355) 0.406 (0.047) 0.220 (0.024) 0.003909 (0.002215)
DT2 [26] 0.685 (0.068) 0.309 (0.079) 0.002863 (0.001865) 0.517 (0.046) 0.236 (0.054) 0.005426 (0.001933)
DET only 0.252 (0.050) 0.243 (0.007) 0.001132 (0.000815) 0.376 (0.042) 0.232 (0.040) 0.004387 (0.002515)
DTT only 0.579 (0.038) 0.332 (0.056) 0.003538 (0.002012) 0.487 (0.036) 0.256 (0.025) 0.003692 (0.001207)
BDETT 0.263 (0.012) 0.213 (0.009) 0.001883 (0.000380) 0.204 (0.018) 0.183 (0.012) 0.002485 (0.000656)

homeostasis. When combining the DTT and DET components, we witness much more stable homeostasis for all
host SNNs.
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Table 17: Quantitative performance of obstacle avoidance tasks with different constant coefficient
settings under static obstacle condition.

LIF (T = 5) SRM (T = 5)

Constant SR↑ SR↑
0.1 97.5% 96.5%
0.2(original) 98.5% 96.5%
0.3 98.5% 96.5%
0.4 97.5% 95.5%
0.5 98% 95%
1.0 93.5% 91.5%

Table 18: Quantitative performance of obstacle avoidance tasks with different constant coefficient
settings under dynamic obstacle condition.

LIF (T = 5) SRM (T = 5)

Constant SR↑ SR↑
0.1 91.5% 90.5%
0.2(original) 92.5% 90.5%
0.3 92% 90%
0.4 92% 89%
0.5 91% 89%
1.0 86% 80.5%

Supplementary Note 7: Impact of Constant Coefficient ‘0.2’ in the DET

In the proposed DET component, a constant ‘0.2’ is used for balancing the contributions of the specifically
designed bias items, i.e., 0.2(max(vli(t))−min(vli(t))) and 0.2(max(Θl

i(t))−min(Θl
i(t))).

Based on our experimental results, the effectiveness of the proposed BDETT is not sensitive to this value. In the
obstacle avoidance tasks (see Tables 18, 19, and 20), when the constant value is within the range of [0.1, 0.5],
the standard deviations of the SRs for the LIF- and SRM-based host SNNs are 0.005 and 0.007, respectively.
More importantly, even with an extreme value of 1.0, the corresponding SRs are higher than those offered by all
other competing dynamic threshold approaches.

In the HalfCheetah-v3 tasks (see Tables 21, 22, and 23) and the Ant-v3 tasks (see Table 24, 25, and 26), the
proposed BDETT method is more sensitive to the coefficient value than in the obstacle avoidance tasks. When
the constant value is within the range of [0.1, 0.5], the standard deviations of the rewards are 94 and 107 for
the LIF- and SRM-based host SNNs in the HalfCheetah-v3 tasks, respectively. In the Ant-v3 experiments, the
LIF- and SRM-based SNNs provide rewards of 114 and 111, respectively. With the extreme value of 1.0, under
some experimental conditions, the rewards offered by our approach are still higher than those provided by other
methods (e.g., the “30% zero weight" condition of HalfCheetah-v3 and the “GN weight" condition of Ant-v3).
However, with the extreme value of 1.0, the effectiveness of the proposed BDETT scheme is reduced. This
means that the sensitivity to the constant value increases as the complexity of the given task increases.

Note that the value of ‘0.2’ offers the most effective and robust performance across all three tasks under all
experimental conditions. Therefore, we set the coefficient to ‘0.2’ in our proposed dynamic threshold scheme.

Table 19: Quantitative performance of obstacle avoidance tasks with different constant coefficient
settings under degraded input conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5)

Type Constant SR↑ SR↑ Type Constant SR↑ SR↑ Type Constant SR↑ SR↑

0.2

0.1 89% 78%

0.6

0.1 83.5% 82%

GN

0.1 83.5% 82%
0.2(original) 90% 79.5% 0.2(original) 84.5% 83% 0.2(original) 84.5% 82.5%
0.3 89% 77.5% 0.3 83% 81.5% 0.3 84% 82%
0.4 87% 75% 0.4 82% 79% 0.4 84% 81.5%
0.5 87.5% 75% 0.5 81.5% 80.5% 0.5 83% 81%
1.0 83.5% 70.5% 1.0 76% 76.5% 1.0 77% 70.5%
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Table 20: Quantitative performance of obstacle avoidance tasks with different constant coefficient
settings under weight uncertainty conditions.

LIF (T = 5)SRM (T = 5) LIF (T = 5)SRM (T = 5) LIF (T = 5)SRM (T = 5)

Type Constant SR↑ SR↑ Type Constant SR↑ SR↑ Type Constant SR↑ SR↑

8-bit
Loihi

weight

0.1 89.5% 87.5%

GN
weight

(5 rounds)

0.1 87.2% 60.5%
30%
Zero

weight
(5 rounds)

0.1 77.2% 64.0%
0.2(original) 90% 88.5% 0.2(original) 87.7% 61.8% 0.2(original) 77.2% 65.2%
0.3 90% 88% 0.3 86.3% 60.0% 0.3 75.8% 64.2%
0.4 88.5% 88% 0.4 85.7% 58.6% 0.4 74.3% 63.5%
0.5 87.5% 87% 0.5 84.1% 57.4% 0.5 72.8% 83.6%
1.0 83% 79.5% 1.0 80.3% 52.3% 1.0 67.1% 52.9%

Table 21: Quantitative performance of HalfCheetah-v3 tasks with different constant coefficient
settings under standard testing conditions.

LIF (T = 5) SRM (T = 5)

Constant Reward↑ Reward↑
0.1 11029 11903
0.2(original) 11064 11960
0.3 10987 11875
0.4 10976 11682
0.5 10793 11724
1.0 10028 11123

Table 22: Quantitative performance of HalfCheetah-v3 tasks with different constant coefficient
settings under degraded input conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5)

Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑

Random
joint

position

0.1 8379 7767

Random
joint

velocity

0.1 8241 7023

GN

0.1 3832 3825
0.2(original) 8465 7883 0.2(original) 8302 7116 0.2(original) 3909 3895
0.3 8302 7748 0.3 8159 6968 0.3 3790 3810
0.4 8351 7703 0.4 8113 6743 0.4 3673 3724
0.5 8188 7615 0.5 8044 6702 0.5 3711 3641
1.0 7580 7180 1.0 7702 6231 1.0 3420 3172

Table 23: Quantitative performance of HalfCheetah-v3 tasks with different constant coefficient
settings under weight uncertainty conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5)

Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑

8-bit
Loihi

weight

0.1 10780 11624

GN
weight

0.1 6798 8142

30%
Zero

weight

0.1 6428 5250
0.2(original) 10823 11767 0.2(original) 6928 8381 0.2(original) 6551 5386
0.3 10672 11584 0.3 6920 8077 0.3 6531 5188
0.4 10658 11467 0.4 6818 7936 0.4 6286 5102
0.5 10583 11385 0.5 6674 7769 0.5 6290 4975
1.0 9757 10648 1.0 6113 7019 1.0 5680 4562

Table 24: Quantitative performance of Ant-v3 tasks with different constant coefficient settings under
standard testing conditions.

LIF (T = 5) SRM (T = 5)

Constant Reward↑ Reward↑
0.1 5662 5803
0.2(original) 5726 5879
0.3 5648 5747
0.4 5570 5589
0.5 5394 5610
1.0 5104 5226
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Table 25: Quantitative performance of Ant-v3 tasks with different constant coefficient settings under
degraded inputs conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5)

Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑

Random
joint

position

0.1 3241 3368

Random
joint

velocity

0.1 2983 2772

GN

0.1 1214 1478
0.2(original) 3339 3450 0.2(original) 3103 2984 0.2(original) 1269 1559
0.3 3188 3380 0.3 3032 2704 0.3 1148 1409
0.4 3213 3217 0.4 2844 2655 0.4 1003 1255
0.5 3062 3048 0.5 2697 2517 0.5 980 1261
1.0 2676 2572 1.0 2230 2280 1.0 772 1083

Table 26: Quantitative performance of Ant-v3 tasks with different constant coefficient settings under
weight uncertainty conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5)

Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑

8-bit
Loihi

weight

0.1 5413 5600

GN
weight

0.1 2703 1596

30%
Zero

weight

0.1 2883 2925
0.2(original) 5570 5648 0.2(original) 2782 1658 0.2(original) 2931 3046
0.3 5373 5583 0.3 2636 1554 0.3 2945 2990
0.4 5230 5349 0.4 2488 1433 0.4 2802 2731
0.5 5022 5224 0.5 2523 1382 0.5 2652 2583
1.0 4448 4783 1.0 2205 1071 1.0 2217 1992
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Table 27: Quantitative performance of obstacle avoidance tasks under the standard static obstacle
conditions with respect to random seeds.

LIF (T = 5) SRM (T = 5)

Random Seed SR↑ SR↑
1 98.5% 96%
2 98.5% 96.5%%
3 97% 95%
4 96.5% 95.5%
5 98% 96%

Mean 97.7% 95.8%
Standard Deviation 0.008 0.005

Coefficient
of Variation 0.008 0.005

Table 28: Quantitative performance of obstacle avoidance tasks under dynamic obstacle conditions
with respect to random seeds.

LIF (T = 5) SRM (T = 5)

Random Seed SR↑ SR↑
1 92% 89.5%
2 92.5% 90.5%
3 91% 90.5%
4 92% 90%
5 92.5% 89.5%

Mean 92% 90%
Standard Deviation 0.005 0.004

Coefficient
of Variation 0.006 0.005

Supplementary Note 8: Impact of Random Seeds

In this section, we study the impact of the random seeds during the training process on the proposed BDETT.
For the obstacle avoidance tasks, we train five models for each LIF- and SRM-based host SNN, corresponding to
five different random seeds. The SRs and the corresponding error bars of the trained host SNNs are reported in
Figure 10a and Tables 27, 28, 29, and 30.

For the continuous control tasks, the rewards obtained in the HalfCheetah-v3 tasks under all experimental
conditions are shown in Figure 10b. The corresponding experimental results are reported in Tables 31, 32, and
33. In Tables 34, 35, and 36, we report the experimental results of the Ant-v3 tasks under all experimental
settings. The results are also illustrated in Figure 10c.

Since the mean success rates and rewards obtained in the three tasks differ significantly, we calculate coefficients
of variation to produce fair comparisons. We observe that the random seeds have the lowest impact on the
obstacle avoidance tasks and the most substantial influence on the Ant-v3 tasks.

Table 29: Quantitative performance of obstacle avoidance tasks under degraded input conditions with
respect to random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed SR↑ SR↑ Type Random Seed SR↑ SR↑ Type Random Seed SR↑ SR↑

0.2

1 89% 79%

0.6

1 83.5% 82%

GN

1 82.5% 81.5%
2 90% 79.5% 2 84.5% 83% 2 84.5% 82.5%
3 89.5% 79% 3 85% 82.5% 3 83% 81.5%
4 88% 78.5% 4 84% 81.5% 4 83.5% 81%
5 89% 78% 5 83% 82% 5 82% 82%

Mean 89.1% 78.8% Mean 84% 82.2% Mean 83.1% 81.7%
Standard Deviation 0.007 0.005 Standard Deviation 0.007 0.005 Standard Deviation 0.009 0.005

Coefficient
of Variation

0.007 0.006
Coefficient
of Variation

0.008 0.006
Coefficient
of Variation

0.010 0.006
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Table 30: Quantitative performance of obstacle avoidance tasks under weight uncertainty conditions
with respect to random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed SR↑ SR↑ Type Random Seed SR↑ SR↑ Type Random Seed SR↑ SR↑

8-bit
Loihi

weight

1 90% 87%

GN
weight

(5 rounds)

1 85.8% 61%

30%

Zero
weight

(5 rounds)

1 76.8% 64.5%
2 90% 88.5% 2 87.7% 61.8% 2 77.2% 65.2%
3 88.5% 86% 3 87.1% 61.3% 3 75.9% 63.9%
4 88.5% 88.5% 4 86.6% 60.2% 4 75.4% 64.5%
5 89% 86.5% 5 87.5% 60.8% 5 76.9% 65.0%

Mean 89.2% 87.3% Mean 86.9% 61% Mean 76.4% 64.6%
Standard Deviation 0.007 0.010 Standard Deviation 0.007 0.005 Standard Deviation 0.007 0.005

Coefficient
of Variation

0.008 0.012
Coefficient
of Variation

0.008 0.009
Coefficient
of Variation

0.009 0.007

Table 31: Quantitative performance of HalfCheetah-v3 tasks under standard testing condition with
respect to random seeds.

LIF (T = 5) SRM (T = 5)

Random Seed Reward↑ Reward↑
1 11064 11960
2 10979 11873
3 9848 10474
4 10881 11061
5 8992 11644
6 10977 10939
7 10975 11337
8 10869 11777
9 10932 10673
10 10993 11841

Mean 10651 11358
Standard Deviation 647 513

Coefficient
of Variation 0.061 0.045

Table 32: Quantitative performance of the HalfCheetah-v3 tasks under degraded input conditions
with respect to random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑

Random
joint

position

1 8465 7883

Random
joint

position

1 8302 7116

GN

1 3909 3895
2 8452 7788 2 8239 7101 2 3820 3854
3 7617 6618 3 7575 5684 3 3292 2648
4 8399 7001 4 8274 6208 4 3797 2979
5 7003 7622 5 7216 6869 5 2816 3561
6 8320 7280 6 8226 6540 6 3675 3197
7 8339 7557 7 8288 6806 7 3790 3636
8 8348 7832 8 8129 6805 8 3743 3582
9 8329 6777 9 8118 6044 9 3858 2770
10 8423 7781 10 8208 6964 10 3806 3667

Mean 8169 7414 Mean 8058 6614 Mean 3651 3379
Standard Deviation 454 443 Standard Deviation 345 459 Standard Deviation 322 426

Coefficient
of Variation

0.056 0.06
Coefficient
of Variation

0.043 0.069
Coefficient
of Variation

0.088 0.126
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Table 33: Quantitative performance of the HalfCheetah-v3 tasks under weight uncertainty conditions
with respect to random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑

8-bit
Loihi

weight

1 10823 11767

GN
weight

1 6928 8381

30%

Zero
weight

1 6551 5386
2 10767 11749 2 6704 8307 2 6486 5308
3 10062 10406 3 6155 7208 3 5671 3970
4 10648 10780 4 6858 7527 4 6296 4254
5 9368 11452 5 5857 8216 5 5217 5249
6 10532 11097 6 6656 7537 6 6282 5007
7 10284 11358 7 6838 8046 7 6341 5040
8 10617 11768 8 6729 8306 8 6231 5337
9 10788 10733 9 6740 7598 9 6537 4227
10 10787 11496 10 6765 8282 10 6481 5081

Mean 10468 11261 Mean 6623 7941 Mean 6209 4886
Standard Deviation 435 460 Standard Deviation 324 407 Standard Deviation 410 501

Coefficient
of Variation

0.042 0.041
Coefficient
of Variation

0.049 0.051
Coefficient
of Variation

0.066 0.103

Table 34: Quantitative performance of the Ant-v3 tasks under standard testing condition with respect
to random seeds.

LIF (T = 5) SRM (T = 5)

Random Seed Reward↑ Reward↑
1 5726 5879
2 5678 5758
3 5306 5798
4 5553 5480
5 3980 5508
6 4657 5590
7 5692 4063
8 5595 5829
9 5688 5429
10 5696 5616

Mean 5357 4933
Standard Deviation 553 500

Coefficient
of Variation 0.103 0.101

Table 35: Quantitative performance of Ant-v3 tasks under degraded input conditions with respect to
random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑

Random
joint

position

1 3339 3450

Random
joint

position

1 3103 2984

GN

1 1269 1559
2 3323 3423 2 2879 2869 2 1166 1524
3 2973 3059 3 2651 2930 3 1030 1432
4 3161 3049 4 2763 2731 4 1093 1357
5 2053 3234 5 2105 2870 5 796 1440
6 2424 3339 6 2547 2863 6 881 1396
7 2993 2252 7 2822 2032 7 1132 830
8 3216 3365 8 2892 2829 8 1105 1501
9 3217 3300 9 3047 2815 9 1268 1464
10 3218 3237 10 2860 2692 10 1020 1385

Mean 2992 2847 Mean 2767 2492 Mean 1076 1250
Standard Deviation 402 332 Standard Deviation 270 256 Standard Deviation 144 196

Coefficient
of Variation

0.134 0.117
Coefficient
of Variation

0.098 0.103
Coefficient
of Variation

0.134 0.157
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Table 36: Quantitative performance of Ant-v3 tasks under weight uncertainty conditions with respect
to random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑

8-bit
Loihi

weight

1 5570 5648

GN
weight

1 2782 1658

30%

Zero
weight

1 2931 3046
2 5398 5641 2 2668 1503 2 2849 2859
3 5219 5611 3 2518 1467 3 2729 2674
4 5309 5291 4 2580 1341 4 2741 2929
5 4395 5201 5 1816 1522 5 1840 2794
6 4853 5394 6 2303 1466 6 2125 2730
7 5166 3968 7 2426 959 7 2654 1895
8 5365 5610 8 2646 1595 8 2826 2760
9 5544 5416 9 2601 1427 9 2874 2635
10 5254 5343 10 2422 1497 10 2802 2644

Mean 5207 4778 Mean 2476 1294 Mean 2637 2432
Standard Deviation 333 473 Standard Deviation 257 181 Standard Deviation 342 294

Coefficient
of Variation

0.064 0.099
Coefficient
of Variation

0.104 0.140
Coefficient
of Variation

0.130 0.121

Figure 10: Quantitative performance of the LIF- and SRM-based BDETThost SNNs with respect to
random seeds.
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Supplementary Note 9: BDETT without Statistical Parameter Settings

We study the impact of the proposed layerwise statistical parameter settings, an extension of section 4.3 of
our main paper. The experimental settings and the corresponding results are reported in Table 37. Without
replacing the constants of the original biological model, the proposed method is is only slightly better than the
ones without any training. Both LIF- and SRM-based experiments validate that the proposed statistical cues are
essential to the proposed method.

Table 37: Quantitative performance of BDETT without statistical parameter settings (SPS) under the
stardard testing conditions. OA means obstacle avoidance; HC-v3 indicates HalfCheetah-v3.

LIF SRM

Approach SPS Trained OA
(SR↑)

HC-v3
(Reward↑)

Ant-v3
(Reward↑)

OA
(SR↑)

HC-v3
(Reward↑)

Ant-v3
(Reward↑)

BDETT Yes Yes 92.5% 11064 5726 90.5% 11960 5879
BDETT No Yes 0% -35 -9 0% -28 -18
BDETT Yes No 0% -124 -73 0% -59 3
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