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Figure 1: Demonstration of a wearable single-eye emotion recognition prototype system consisting with a bio-inspired event-
based camera (DAVIS346) and a low-powerNVIDIA JetsonTX2 computing device. Event-based cameras simultaneously provide
intensity and corresponding events, which we input to a newly designed lightweight Spiking Eye Emotion Network (SEEN)
to effectively extract and combine spatial and temporal cues for emotion recognition. Given a sequence, SEEN takes the start
and end intensity frames (green boxes) along with 𝑛 intermediate event frames (red boxes) as input. Our prototype system
consistently recognizes emotions based on single-eye areas under different lighting conditions at 30 FPS.
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ABSTRACT
We introduce a wearable single-eye emotion recognition device
and a real-time approach to recognizing emotions from partial ob-
servations of an emotion that is robust to changes in lighting con-
ditions. At the heart of our method is a bio-inspired event-based
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camera setup and a newly designed lightweight Spiking Eye Emo-
tion Network (SEEN). Compared to conventional cameras, event-
based cameras offer a higher dynamic range (up to 140 dB vs. 80
dB) and a higher temporal resolution (in the order of 𝜇s vs. 10s
of 𝑚s). Thus, the captured events can encode rich temporal cues
under challenging lighting conditions. However, these events lack
texture information, posing problems in decoding temporal infor-
mation effectively. SEEN tackles this issue from two different per-
spectives. First, we adopt convolutional spiking layers to take ad-
vantage of the spiking neural network’s ability to decode perti-
nent temporal information. Second, SEEN learns to extract essen-
tial spatial cues from corresponding intensity frames and lever-
ages a novel weight-copy scheme to convey spatial attention to
the convolutional spiking layers during training and inference. We
extensively validate and demonstrate the effectiveness of our ap-
proach on a specially collected Single-eye Event-based Emotion
(SEE) dataset. To the best of our knowledge, our method is the first
eye-based emotion recognition method that leverages event-based
cameras and spiking neural networks.
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•Computingmethodologies→Computer vision; Supervised
learning by classification; Spiking neural networks.
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1 INTRODUCTION
Real-time emotion recognition in uncontrolled environments is a
challenging problem that forms the cornerstone of many in-the-
wild human-centered interactive computer graphics experiences
such as interactive storytelling that adapts to the users emotions,
and emotion-aware virtual avatars. Predicting emotions from reg-
ular RGB video streams is a challenging and ambiguous endeavor;
informative spatial and temporal emotive cues can be adversely
affected by head pose and partial occlusions. To help classify emo-
tions in RGB video frames, existing facial emotion recognitionmod-
els build on complex CNN-based models such as ResNet 50 [Deng
et al. 2020b], Transformer [Zhao and Liu 2021], and Inception-based
methods [Hickson et al. 2019]. Robustly handling varying lighting
conditions and rapid user movements further complicates emotion
recognition, and existing methods rely on cumbersome large net-
work enhancement modules [Zhao and Liu 2021] or impose active
IR lighting [Wu et al. 2020]. Despite all these innovations, emotion
recognition from RGB video streams remains difficult and fragile.

In this paper, we introduce a novel wearable emotion recogni-
tion prototype in which a bio-inspired event-based camera (DAVIS-
346) is affixed in front of a user’s right eye. An event-based camera

can providemore robust temporal cues for emotion recognition un-
der adverse lighting conditions as it offers a higher dynamic range
(up to 140 dB vs. 80 dB) and a higher temporal resolution (in the
order of 𝜇s vs. 10s of𝑚𝑠) than a conventional camera. Even though
this setup provides a stable fixed perspective of a right eye and it
can robustly handle various lighting conditions, estimating emo-
tion from a single eye still poses unique challenges.

A key issue is that event-based cameras do not capture texture
information effectively (see Figure 1).These spatial features are not
only essential for emotion recognition but also important for infer-
ring more informative temporal features. For example, while pupil
motion and blinking are dominant temporal cues, they are less in-
formative for emotion classification. In contrast, the subtle move-
ments related to the facial units, such as raising the outer brow and
squinting, are stronger cues for eye-based emotion recognition.

To address these challenges, we devise a lightweight SEEN,which
combines the best from both events and intensity frames to guide
emotion recognition from asynchronous events with spatial tex-
ture cues from corresponding intensity frames. In particular, SEEN
consists of a spatial feature extractor and a temporal feature extrac-
tor that partially share the same convolutional architecture. Dur-
ing training, the shared convolutional parts are only learned in
the spatial feature extractor, and the updated weights are copied
to the temporal feature extractor. Consequently, spatial attention
can be effectively conveyed to the temporal decoding process. As
such, the temporal feature extractor learns to associate spatial and
temporal features, resulting in a consistent emotion classification.

To train our lightweight Spiking Eye Emotion Network (SEEN)
and to stimulate research in event-based single-eye emotion recog-
nition, we introduce a new Single-eye Event-based Emotion (SEE)
dataset. We validate our approach on the SEE dataset and demon-
strate state-of-the-art emotion recognition under different challeng-
ing lighting conditions, outperforming the runner-up method by a
significant margin, 4.8% and 4.6% in WAR and UAR, respectively.
The prototype system with an NVIDIA Jetson TX2 operates at 30
FPS in real-world testing scenarios.

Specifically, our work makes the following contributions:

• a novel real-time emotion recognitionmethod based on event
camera measurements and a spiking neural network suited
for in-the-wild deployment;

• a weight-copy training scheme to enforce learned weights
awareness of both spatial and temporal cues; and

• the first publicly available single-eye emotion dataset con-
taining both intensity frames and corresponding raw events,
captured under four different lighting conditions.

Limitations. SEEN partially relies on spatial features extracted
from intensity frames, which can be adversely affected by extremely
degraded lighting conditions, resulting in a significant performance
drop. While our method robustly handles most lighting conditions
effectively, as evidenced by our experimental results, further im-
proving robustness by solely leveraging events forms an exciting
avenue for future research in eye-based emotion recognition.

The code and dataset are available on github.

https://doi.org/10.1145/3588432.3591511
https://github.com/zhanghaiwei1234/Single-eye-Emotion-Recognition
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2 RELATEDWORK
We focus our discussion on related work in emotion recognition
on measuring emotions (wearable emotion sensing systems) and
recognition (facial emotion recognition).

Wearable Emotion Sensing Systems. Emotions impact the human
body in subtle ways. However, not all of these signals are equally
robust indicators of emotional state, and not all are easily mea-
sured. Various bio-signals have been investigated for convenient
measurement of indicators of emotional state. Long-termheart rate
variability (HRV) has been shown to strongly correlate with emo-
tional patterns [Appelhans and Luecken 2006; Costa et al. 2019].
Similarly, brain activity recorded by electroencephalogram (EEG)
sensors also correlates to different emotions [Li et al. 2018; Liu et al.
2020]. Inspired by human perception of emotions, Electromyogram
(EMG) measurements of facial muscle contractions [Lucero and
Munhall 1999]map to emotions, makingwearable emotional detec-
tion devices possible [Gruebler and Suzuki 2014]. A disadvantage
of thesemethods is that they require the sensors tomake direct skin
contact, dramatically restricting freedom of activity. Furthermore,
due to the displacement of sensors and muscular cross-talk dur-
ing movement, the results can be of low reliability. An alternative
to contact-based measurement is pupillometry, i.e., the measure-
ment of pupil size and reactivity, as a potential indicator of emo-
tion [Mathôt 2018; Nie et al. 2020]. However, pupilometry requires
expensive equipment, and the reliability is significantly impacted
by ambient lighting [Couret et al. 2019]. Similar to pupilometry,
our method also focuses on the eye as an indicator of emotional
state. However, in contrast to prior work, we employ an event-
based camera that does not require direct skin contact and which
can operate in challenging lighting conditions.

Facial Emotion Recognition. Facial emotion recognition has re-
ceived significant attention in computer graphics and computer vi-
sion, with applications ranging fromdriving facial expressions [Hick-
son et al. 2019; Ji et al. 2022] to facial reenactment for efficient so-
cial interactions [Burgos-Artizzu et al. 2015; Li et al. 2015]. A signif-
icant portion of prior work in facial emotion recognition requires
observations of the entire face, and several methods have been
introduced for effective facial feature learning [Ruan et al. 2021;
Xue et al. 2021], dealing with uncertainties in facial expression
data [Zhang et al. 2021a], handing partial occlusions [Georgescu
and Ionescu 2019; Houshmand and Khan 2020], and exploiting tem-
poral cues [Deng et al. 2020b; Sanchez et al. 2021]. Combinations
with other modalities such as contextual information [Lee et al.
2019] and depth [Lee et al. 2020] have also been explored to fur-
ther improve facial recognition accuracy.

However, observing the entire face is not feasible inmany practi-
cal situations. Alternatively, several methods focus on the eye area
only for emotion recognition. Hickson et al. [2019] infer emotional
expressions based on images of both eyes captured with an in-
frared gaze-tracking camera inside a virtual reality headset. Wu et
al. [2020] rely on infrared single-eye observations to reduce cam-
era synchronization and data bandwidth issues when monitoring
both eyes. Both systems require a personalized initialization pro-
cedure; Hickson et al. require a personalized neutral image, and
Wu et al. require a reference feature vector of each emotion. The
need for a personalized setup makes these systems intrusive and

non-transparent to the user and could raise privacy concerns. Fur-
thermore, neither system leverages temporal cues, which are es-
sential for robust emotion recognition [Sanchez et al. 2021]. Our
approach does not require personalization, and it leverages tempo-
ral and spatial cues to improve emotion recognition accuracy.

3 BACKGROUND
Before detailing our method, we first review work related to the
two key components of our event-based emotion recognitionmethod:
event-based cameras and spiking neural networks.

Event-based Cameras.An event-based camera differs from a con-
ventional camera in that it does not measure pixel intensities, but
instead, an event-based camera records asynchronous (log-encoded)
per-pixel brightness changes [Gallego et al. 2022; Gehrig et al. 2021].
Event-based cameras offer a significantly higher dynamic range
(up to 140 dB) and a higher temporal resolution (in the order of 𝜇s)
than conventional cameras. Each event 𝑒 is characterized by three
pieces of information: the pixel location, (𝑥,𝑦); the event trigger-
ing time, 𝑡 ; and a polarity, 𝑝 ∈ {−1, 1} which reflects the direction
of the brightness change. Formally, a set of𝑁 events can be defined
as:

E = {𝑒𝑘 }𝑁𝑘=1 = {[𝑥𝑘 , 𝑦𝑘 , 𝑡𝑘 , 𝑝𝑘 ]}𝑁𝑘=1 . (1)

Under static lighting, a stationary event-based camera only records
scene motion, and events are typically triggered by moving edges
(e.g., object contours, and texture boundaries). Since the events pre-
dominately stem from the motion of edges, the measured events
are inherently sparse and devoid of texture information. Further-
more, since the captured events are triggered asynchronously, events
are incompatible with CNN-based architectures. Instead, events
are aggregated into a frame or grid-based representation [Gehrig
et al. 2019; Lagorce et al. 2017; Maqueda et al. 2018; Wang et al.
2022] before neural processing. In our implementation, we adopt
the aggregation algorithm of Zhang et al. [2021b], which currently
offers the highest performance for single object tracking under nor-
mal and degraded conditions. We refer to the Supplementary Ma-
terial for additional details.

Spiking Neural Network (SNN). Spiking neural networks (SNNs)
closely mimic biological information processes. An SNN incorpo-
rates the concept of time and only exchanges information (i.e., spike)
when amembrane potential exceeds some potential threshold.Math-
ematically an SNN neuron simulates the properties of a cell in a
nervous systemwith varying degrees of detail, whichmodels three
states of a biological neuron: rest, depolarization, and hyperpolar-
ization [Ding et al. 2022]. When a neuron is at rest, its membrane
potential remains constant; typically set to 0. When not at rest,
the change in the membrane potential can either decrease or in-
crease. An increase in membrane potential is called depolarization.
In contrast, hyperpolarization describes a reduction in membrane
potential. When a membrane potential is higher than a potential
threshold, an action potential, i.e., spike, is triggered, which for an
SNN is a binary value. We refer the interested reader to Ding et
al. [2022] for an in-depth discussion of these concepts.

In this paper, we use the leaky integrate-and-fire (LIF) spiking
neuron model [Gerstner and Kistler 2002], one of the most widely
used spikingmodels.When a LIF neuron receives spikes fromother
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neurons, the spikes are scaled accordingly based on learned synap-
tic weights. Depolarization is achieved by summing over all the
scaled spikes. A decay function over time is used to drive the poten-
tial membrane to hyperpolarization. We refer to the Supplemental
Material for a detailed formal definition of LIF.

4 SPIKING EYE EMOTION NETWORK (SEEN)
Existing facial emotion recognition methods typically only iden-
tify the “peak” states of emotions [Hickson et al. 2019] or a single
emotion state over a whole sequence [Zhao and Liu 2021], making
these methods unsuitable for applications that also require a ro-
bust estimate of the in-between states. We introduce a lightweight
Spiking Eye Emotion Network (SEEN) that is able to effectively
recognize emotions from various states of emotions.

Instead of only memorizing the peak phase of an individual’s fa-
cial emotion, SEEN is designed to leverage temporal cues to distin-
guish different phases of emotions using sparse events input cap-
tured with an event-based camera (DAVIS346 camera). Compared
to a conventional camera, an event-based camera has a number of
advantages: it is more sensitive to motion, less sensitive to ambient
lighting, and it offers a high dynamic range. Hence, an event-based
camera is capable of providing stable temporal information under
different lighting conditions. While this makes event-based cam-
eras, in theory, an attractive input modality for motion-based mea-
surements, in practice, a major drawback of existing event-based
cameras is that the recorded events are noisy and lack texture in-
formation. We address this drawback with a hybrid system that
leverages both spatial cues together with conventional intensity
frames to guide temporal feature extraction during training and
inference. Most commercial event-based cameras are capable of si-
multaneously capturing both intensity frames and events through
spatially-multiplexed sensing.

4.1 SEEN Architecture
As illustrated in Figure 2(a), at its core, the architecture of SEEN
consists of a spatial feature extractor, 𝑆 (described in detail in sub-
section 4.2), and a temporal feature extractor,𝑇 (detailed in subsec-
tion 4.3). Given two intensity frames, 𝐼1 and 𝐼𝑛 , SEEN interpolates
the asynchronous captured events between both intensity frames
in 𝑛 synchronous event frames. Next, the spatial feature extractor
𝑆 distills spatial cues from the intensity frames 𝐼1 and 𝐼𝑛 , and the
temporal feature extractor 𝑇 processes each of the 𝑛 event frames
sequentially in time order. Finally, the temporal features and the
spatial cues are then combined to predict 𝑛 emotion scores. The fi-
nal predicted emotion is based on the average of the 𝑛 scores. The
core component of the temporal feature extractor 𝑇 is the SNN
layers that make decisions based on membrane potentials to re-
member temporal information from previous event frames. Unlike
RNNs [Kag and Saligrama 2021; Nah et al. 2019], SNNs can effec-
tively learn temporal dependencies of arbitrary length without any
special treatment.

4.2 Spatial Feature Extractor 𝑆
To make spatial feature extraction independent from the inten-
sity sequence length, we only use the first and last frames of a

sequence as the input to the spatial feature extractor, thereby fix-
ing the input size regardless of the sequence length, i.e., two frames.
The spatial feature extractor 𝑆 (Figure 2(b)) leverages a multiscale
self-attention perception module, Ω, to obtain discriminative fea-
tures from different-sized neighborhoods.The extracted spatial fea-
tures are then transferred into the spiking format, 𝐽𝑠 , via a spiking
layer, which is subsequently combined with temporal features to
enhance feature discrimination. Formally, the spatial feature ex-
tractor can be defined as:

𝐽𝑠 = Φ1 (𝐹𝑠 ), (2)
𝐹𝑠 = 𝐶3 (𝐶3 (Ω (3,5,7) (𝑙𝑠 ))), (3)

Ω (𝑥1,...,𝑥𝑛 ) (·) := 𝐶1 ( [𝜔
𝑠1
(𝑥1,...,𝑥𝑛 )𝐶𝑥1 (·), ..., 𝜔

𝑠𝑛
(𝑥1,...,𝑥𝑛 )𝐶𝑥𝑛 (·)]), (4)

𝜔𝑠𝑖
(𝑥1,...,𝑥𝑛 ) = 𝜎

(⟨
Υ(𝐶𝑥1 (𝑙𝑠 )), ...Υ(𝐶𝑥𝑛 (𝑙𝑠 ))

⟩)
𝑖 , (5)

Υ(·) := 𝐶1 (BR(𝐶1 (A(·)))), (6)

𝑙𝑠 = 𝐶1 ( [𝐼1, 𝐼𝑛]), (7)

where [·] and ⟨·⟩ indicate channel-wise concatenation and a vec-
tor, respectively; 𝐶𝑖 and 𝜎 denote an 𝑖 × 𝑖 convolution layer and
a softmax function, respectively; A denotes an adaptive pooling
layer; BR is a fused batch normalization layer with a ReLU activa-
tion function; Φ𝑡 is a spiking layer that keeps membrane potential
from the previous time step, 𝑡 − 1. The initial membrane potential,
i.e., 𝑡 = 0, is set to 0 (see Equation 13).

4.3 Temporal Feature Extractor 𝑇
The basis building blocks of the temporal feature extractor 𝑇 are
SNN layers. An SNN neuron outputs signals based on a membrane
potential accumulation, decay, and reset mechanisms to capture
the temporal trends in an input sequence [Ding et al. 2022]. When
the membrane potential exceeds a threshold, an action potential
(i.e., spike) is triggered and the membrane potential is reset. The
trigger process itself is non-differentiable, prohibiting training via
conventional stochastic gradient descent optimizationmethods. In-
stead, we adopt spatio-temporal backpropagation (STBP) alongwith
a CNN-SNN layer [Wu et al. 2018] to circumvent this issue. This
CNN-SNN layer employs a CNN-based layer for the aggregation
process and a LIF-based SNN neuron [Gerstner and Kistler 2002]
for managing the potential decay and reset processes. This modifi-
cation takes advantage of CNN-based layers that enable learning
of diverse accumulation strategies, resulting in more effective SNN
neurons in the temporal domain.

Intensity Attention-Guided Temporal Features. Purely relying on
events does not yield a robust solution due to the lack of reliable
texture information in the event domain. We, therefore, leverage
spatial features from 𝑆 to inject rich texture cues. Figure 2(c) illus-
trates the architecture of the temporal extractor 𝑇 .

The feature extractor 𝑇 takes 𝑛 event frames, 𝐸1 to 𝐸𝑛 , as in-
put and processes each frame sequentially in time order. Formally,
given the spatial feature 𝐽𝑠 , the temporal feature extraction of 𝐸𝑡
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Figure 2: Our Spiking Eye Emotion Network (a) leverages a CNN-SNN-based temporal feature extractor, 𝑇 , (c) to process 𝑛
accumulated event frames, i.e., 𝐸𝑖 , in time order sequentially. During the process, based on two intensity frames, 𝐼1 and 𝐼𝑛 , the
spatial feature extractor, 𝑆 , (b) relies on a multiscale self-attention module to extract spatial features, 𝐽𝑠 , which are combined
with temporal cues to estimate emotions. The convolutional blocks before spiking-addition operator in the temporal feature
extractor𝑇 fail to properly train due to lack of texture information in the event frames. Instead, we copy the updated weights
from the corresponding blocks of the spatial feature extractor 𝑆 . During inference, the attention weights are also copied di-
rectly from 𝑆 to 𝑇 to increase inference speed. The copying operations are marked by the red dashed arrows.

is defined by:
𝑂𝑡 = M(Γ(Γ(𝐽 𝑡𝑐 ))), (8)
𝐽 𝑡𝑐 = 𝐽 𝑡𝑒 ⊕ 𝐽𝑠 , (9)
𝐽 𝑡𝑒 = Φ𝑡 (𝐹 𝑡𝑒 ), (10)
𝐹 𝑡𝑒 = 𝐶3 (Φ𝑡 (𝐶3 (Φ𝑡 (Ω (3,5,7) (𝐸𝑡 ))))), (11)

Γ(·) := Φ𝑡 (Ψ(·)), (12)
where M is an operator for obtaining membrane potentials from
an SNN layer, and Ψ represents a fully connected layer; Φ𝑡 (·) in-
dicates an SNN layer, which records the previous spiking status,
𝑃𝑡−1, and potential value,𝑉 𝑡−1. When receiving membrane poten-
tials 𝑋 𝑡 , this SNN layer outputs updated spikes, 𝑃𝑡 , and updates
the recorded membrane potential 𝑉 𝑡 as follows:

𝑃𝑡 = ℎ(𝑉 𝑡 − Θ),
𝑉 𝑡 = 𝛼𝑉 𝑡−1 (1 − 𝑃𝑡−1) + 𝑋 𝑡 ,

ℎ(𝑥) =
{
1 𝑥 >= 0

0 𝑥 < 0
, (13)

where Θ is the membrane potential threshold set to 0.3 in all our
experiments. The parameter 𝛼 is a decay factor used for achieving
hyperpolarization. The potential value𝑉 𝑡 is updated such that, for
a spike at timestamp 𝑡 − 1, the membrane potential should be reset
to 0 by scaling 1 − 𝑃𝑡−1, and 𝑋 𝑡 is the corresponding item here.

Finally, the emotion is the average of 𝑂𝑡 , 𝑡 ∈ [1, 𝑛]:

𝑅 = 𝜎 ( 1
𝑛

𝑛∑
𝑡=1

𝑂𝑡 ), (14)

where 𝜎 is a Softmax activation function.

4.4 Weight-Copy Scheme
Intuitively, we want temporal information extraction to focus on
informative spatial positions, such as facial action units [Ekman

and Friesen 1978]. However, events lack sufficient texture infor-
mation, which impedes the temporal feature extractor from con-
sidering spatial information. To alleviate this problem, we propose
a weight-copy scheme that copies the weights from the spatial fea-
ture extractor to the temporal feature extractor. Thus, during train-
ing, only the fully connected layers in 𝑇 are trained. The weight-
copy scheme requires that all convolutional blocks before the spiking-
addition operator, i.e., Equation 9, are of the same architecture in
𝑆 and𝑇 ; see Equation 3 and Equation 11. Note that the supervised
loss conveys the impact from both the spatial and temporal do-
mains enabled by the spiking-addition. Since the weights are fixed
before the spiking-addition in the temporal feature extractor𝑇 , the
training of the spatial features must also account for temporal cues.
Therefore, the weight updating implicitly bridges the domain gap
between intensity and event frames.

Weight copying is also applied to the self-attention weights, i.e.,
the self-attentionweights in Equation 11 are replaced by theweights
from Equation 5; see Figure 2(a). As we will show in our experi-
mental results, this design is more effective than inferring the self-
attention weights based on input events (row E in Table 2 except
E4-S0) and it yields a more efficient inference.

4.5 Loss Function
Because emotion recognition is a classification task, we use a reg-
ular cross-entropy loss for supervised training of SEEN:

ℓ = −1
7

7∑
𝑖=1

𝑦𝑖 log(𝑦𝑖 ), (15)

where 𝑦𝑖 and 𝑦𝑖 are the predicted 𝑖-th emotion’s probability and
corresponding ground truth probability, respectively.

5 DATASET
To the best of our knowledge, there does not exist an event-based
dataset for single-eye emotion recognition. The two most related
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(c) Seven Emotion Classes

Figure 3: The newly collected Single-eye Event-based Emo-
tion (SEE) dataset covers seven emotion classes (c) under
four lighting conditions (a).The detailed statistics of the SEE
dataset are illustrated in (b).

are the active infrared lighting/camera datasets Eyemotion [Hick-
son et al. 2019] (both eyes) and EMO [Wu et al. 2020] (single eye).

To address this lack of training data for event-based emotion
recognition, we collect a new Single-eye Event-based Emotion (SEE)
dataset; see Figure 3. SEE contains data from 111 volunteers cap-
tured with a DAVIS346 event-based camera placed in front of the
right eye and mounted on a helmet; see Figure 1. The DAVIS346
camera is equipped with a dynamic version sensor (DVS) and an
active pixel sensor (APS), providing both raw events and conven-
tional frames simultaneously. Unlike Eyemotion and EMO, our ap-
proach does not require any active lighting source, thereby simpli-
fying installation, testing, and maintenance of the hardware setup.
A summary of the technical differences between SEE and the ex-
isting emotion datasets is provided in Supplementary Materials.

SEE contains videos of 7 emotions (see Figure 3(c) for an ex-
ample) under four different lighting conditions: normal, overexpo-
sure, low-light, and high dynamic range (HDR) (Figure 3(a)). The
average video length ranges from 18 to 131 frames, with a mean

frame number of 53.5 and a standard deviation of 15.2 frames, re-
flecting the differences in the duration of emotions between sub-
jects. In total, SEE contains 2, 405/128, 712 sequences/frames with
corresponding raw events for a total length of 71.5 minutes (Fig-
ure 3(b)), which we split in 1, 638 and 767 sequences for training
and testing, respectively.

6 ASSESSMENT
Themain goal of SEEN is to recognize an emotion for any phase of
the emotion. Consequently, when evaluating a test sequence, we
choose a uniformly distributed random starting point and corre-
sponding testing length. A start point is selected such that the rest
sequence is longer than the corresponding testing length. The test-
ing length is defined as the total accumulation time of all included
event frames, 𝑥 , and a skip time, 𝑦, between two adjacent event
frames, denoted as E𝑥-S𝑦. The skip time defines a window in the
time domain where all events are ignored; see “skip” in Figure 2.
Note that the skip time is not associated with event-based cameras
but an experimental setting. Without loss of generality, the accu-
mulation time and skip time are expressed as a multiple of 1/30
s. Thus, E𝑥-S𝑦 indicates a testing length equal to (𝑥 + (𝑥 − 1) ×
𝑦)/30 s. To reduce the impact of the randomness, we evaluate all
competing methods 20 times for different randomly selected start
points for each testing sequence; we use the same random start-
ing points for single-frame competing methods, where only the
random start frame is used. To evaluate the proposed approach
and compare it to competing methods, we adopt two widely used
metrics: Unweighted Average Recall (UAR) and Weighted Average
Recall (WAR) [Schuller et al. 2011]. UAR reflects the average ac-
curacy of different emotion classes without considering instances
per class, while WAR indicates the accuracy of overall emotions;
we refer to the Supplementary Materials for formal definitions of
both metrics.

6.1 Training Setup
SEEN is implemented in PyTorch [Paszke et al. 2019] and trained
with stochastic gradient descent (SGD) with a momentum of 0.9
and a weight decay of 1e−3. We train SEEN for 180 epochs with a
batch size of 32 on an NVIDIA TITAN V GPU. We use the StepLR
scheduler to moderate the learning rate. Specifically, the initial
learning rate is set to 0.015, the step size is set to 1, and the decay
rate is set to 0.94. For the SNN settings, we use a spiking threshold
of 0.3 and a decay factor of 0.2 for all SNN neurons.

6.2 Qualitative andQuantitative Evaluation
We compare the effectiveness of SEEN to existing emotion recog-
nition methods relying on conventional intensity images only, in-
cluding whole-face, single-eye, and double-eye based methods. Of
these prior methods, Eyemotion [Hickson et al. 2019] and EMO
[Wu et al. 2020] are single-frame methods for predicting an emo-
tion, while all other methods require the full video sequence. As
shown in Table 1, SEEN for E4-S3 offers the best performance,
outperforming the runner-up method, Eyemotion, by significant
margins, 4.8% and 4.6% higher in WAR and UAR, respectively. Un-
der normal, overexposure, and HDR lighting conditions, our ap-
proach with the same setting also outperforms Eyemotion by at
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Table 1: Quantitative comparison against the state-of-the-art. All methods are retrained and tested on the SEE dataset. The
abbreviations are defined as Ha → Happiness; Sa → Sadness; An → Anger; Di → Disgust; Su → Surprise; Fe → Fear; Ne →
Neutrality; Nor→ Normal; Over→ Overexposure; Low→ Low-Light. The first and second best results are highlighted in bold
and underline, respectively.

Methods Acc. of Emotion Class (%) Acc. under Light Conditions (%) Metrics (%)
Ha Sa An Di Su Fe Ne Nor Over Low HDR WAR ↑ UAR ↑ FLOPS (G) Time (ms)

Resnet18 + LSTM [2016; 1997] Face 57.8 86.0 64.9 46.5 9.2 81.6 59.8 57.9 60.4 53.9 52.5 56.3 58.0 7.9 5.0
Resnet50 + GRU [2020a; 2016] Face 27.9 38.0 49.7 44.5 6.9 70.0 5.6 43.0 35.7 28.9 32.8 35.2 34.7 17.3 10.3
3D Resnet18 [2018] Face 54.8 45.4 67.7 23.8 37.2 42.8 81.6 51.9 51.4 44.8 47.8 49.1 50.5 8.3 21.2
R(2+1)D [2018] Face 63.6 45.5 65.7 27.8 33.3 37.9 86.6 54.3 50.3 44.4 49.3 49.7 51.5 42.4 47.3
Former DFER [2021] Face 81.5 75.2 85.8 59.4 39.3 50.8 78.6 70.1 65.4 66.2 61.1 65.8 67.2 8.3 7.7
Former DFER w/o pre-train Face 44.1 65.2 46.0 66.5 28.0 50.3 36.1 47.0 51.9 45.6 47.2 48.0 48.0 8.3 7.7
Eyemotion [2019] Eye 74.3 85.5 79.5 74.3 69.1 79.2 94.5 79.0 81.8 81.5 72.5 78.8 79.5 5.7 17.5
Eyemotion w/o pre-train Eye 79.6 85.7 81.2 71.2 54.7 71.6 96.4 77.8 75.9 79.8 69.7 75.9 77.2 5.7 17.5
EMO [2020] Eye 75.0 75.1 70.2 48.1 37.5 54.1 82.8 61.8 62.8 60.1 69.6 63.1 63.3 0.3 7.1
EMO w/o pre-train Eye 62.0 73.2 60.1 38.7 25.7 48.0 65.3 46.1 60.2 55.5 58.9 53.2 53.3 0.3 7.1
Ours(E4-S0) Eye 76.0 85.0 85.8 74.8 66.8 79.9 85.3 78.0 80.0 78.1 78.3 78.6 79.1 0.9 7.2
Ours(E4-S1) Eye 76.9 89.2 88.9 76.3 69.0 82.3 86.6 78.5 83.4 80.5 81.0 80.9 81.3 0.9 7.2
Ours(E7-S0) Eye 76.7 86.8 87.6 74.2 66.2 82.4 86.7 78.1 80.9 77.3 82.1 79.6 80.1 1.5 10.7
Ours(E4-S3) Eye 85.0 89.9 92.2 76.7 72.1 87.7 85.2 83.3 85.6 80.8 84.8 83.6 84.1 0.9 7.2
Ours(E7-S1) Eye 79.0 90.9 91.1 77.2 71.7 85.0 84.4 82.4 86.7 79.8 80.3 82.4 82.7 1.5 10.7
Ours(E13-S0) Eye 77.9 88.7 90.2 79.2 69.7 87.6 84.6 81.1 86.5 79.4 81.8 82.3 82.5 2.6 19.0

least 4% in accuracy. However, Eyemotion offers slightly better
performance under low-light conditions than SEEN with E4-S3.
We posit that Eymotion benefits from the Imagenet[Deng et al.
2009] pre-training process; without this pre-training step, Eyemo-
tion’s accuracy is 1% less than the one offered by SEEN with E4-S3
setting. Moreover, we note that Eyemotion requires a personaliza-
tion preprocessing step, which requires subtracting a mean neutral
image for each person. Personalization dramatically increases the
accuracy of neutral emotion estimation regardless of whether Eye-
motion is pre-trained on ImageNet or not.

We compare SEENwith three different sequence lengths: 4/30 s,
i.e., E4-S0; 7/30 s, i.e., E4-S1 group; 13/30 s, i.e., E4-S3 group.The ex-
perimental results show that the accuracy of SEEN improves with
longer sequence length under all lighting conditions, especially un-
der HDR conditions. Note, all other prior video-based approaches
require the full video sequences; consequently, their delay time is
the length of an input sequence. In contrast, our method can flexi-
bly adjust the delay time by changing input settings. Figures 4 and
5 qualitatively demonstrate the benefits of our method compared
to prior eye-based emotion recognition methods. In Table 1, the
complexity and processing speed of each competing approach are
also provided. As the temporal feature extractor processes event
frames iteratively, the complexity and processing time increase
with the number of event frames. Nevertheless, with the E4-S3 set-
ting, our method offers the second fastest processing speed, but it
is more than 20% more accurate than the fastest method, EMO.

6.3 Ablation Study
To gain better insight into the abilities of SEEN,we perform a series
of ablation studies that investigate a) the impacts of input, b) the
influence of each component of SEEN, and c) the impact of outputs.
Table 2 summarizes the experimental results.

Table 2: Quantitative ablation comparisons show that: a)
both the first and last intensity frames are essential for pro-
viding discriminative features; b) all components of SEEN
contribute to the overall performance (except experiment E
under the E4-S0 setting); and c) potential averaging is neces-
sary results in a more accurate performance.

E4-S0 E4-S1 E4-S3
Networks WAR UAR WAR UAR WAR UAR

𝐴 w/o 𝐼𝑛 77.1 77.6 79.9 80.2 81.3 81.8
𝐵 𝐼𝑛 → 𝐼2 76.4 76.9 80.1 80.6 81.8 82.2
𝐶 [𝐼1, ..., 𝐼𝑛] 78.0 78.4 79.9 80.2 82.9 83.3
𝐷 No weight copy 77.5 78.0 79.6 80.0 82.1 82.6
𝐸 No Att. weight copy 78.7 79.2 80.7 81.1 83.0 83.2
𝐹 SNN → CNN 50.2 50.2 53.2 53.2 55.7 55.6
𝐺 SNN → LSTM 52.9 53.0 55.3 55.2 55.8 55.7
𝐻 SNN → Transformer 69.2 69.8 73.6 74.2 77.1 77.3
𝐼 SNN → 3D CNN 54.3 54.3 57.7 57.7 59.9 59.9
𝐽 Last potential 76.6 77.2 78.8 79.2 81.1 81.7
𝐾 Last spike 55.7 54.8 59.5 58.9 63.2 62.8
𝐿 Mean spike 63.5 63.2 64.1 63.6 69.7 69.5
𝑀 Ours 78.6 79.1 80.9 81.3 83.6 84.1

Impacts of Input. SEEN leverages the first and last intensity frames.
Experiments (A), (B) and (C) gauge the impact of the intensity
frames: experiment (A) only uses the first intensity frame, experi-
ment (B) replaces the last intensity frame with the second frame,
and experiment (C) uses all the intensity frames corresponding to
the included event frames. The results of (A) and (B) demonstrate
spatial differences are critical for𝑇 to extract descriptive temporal
cues. Compared to experiments (A) and (B), the results of experi-
ment (C) show that using more intensity frames slightly increases
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performance. However, compared to our method, the setup dra-
matically increases data bandwidth.

Influence of SEEN components. We investigate the effectiveness
of the different components that comprise SEEN: 1) the effective-
ness of the weight-copy scheme (experiments (D) and (E)) and 2)
the benefits of SNNs (experiments (F) to (I)). These two experiment
groups show that SEEN with all components offers the best per-
formance, except experiment E under the E4-S0 setting. Experi-
ments (F) to (I) show that replacing the CNN-SNN with a 3-layer
CNN, LSTM, Transformer, or 3D CNN significantly degrades per-
formance. A CNN fails to extract useful temporal cues, so the per-
formance degradation further justifies the inclusion of temporal
cues. Although LSTM, Transformer, and 3D CNN can extract tem-
poral cues, they are less effective than SNNs. Notably, an SNN neu-
ron’s spiking mechanism acts as temporal memory and a natural
noise filter, which is beneficial for robust emotion recognition.

Impact of outputs. SEEN estimates emotions based on the av-
erage of 𝑛 membrane potentials; see Equation 8 and Equation 14.
To better understand the impact of this design decision, we con-
duct three ablation experiments: instead of using the average of 𝑛
membrane potentials, we define the prediction score based on the
potential generated by the last event frame only (experiment (J));
similar to the previous but using output spikes instead of potential
(experiment (K)); and finally using the average of 𝑛 output spikes
instead of the 𝑛 membrane potentials for emotion classification,
i.e., remove the M operator in Equation 8 (experiment (L)). These
results show that membrane potentials are more effective signals
than spikes.We posit that the higher precision of membrane poten-
tials (float vs. binary for spikes) offers more discriminative features
for emotion classification. When a membrane potential triggers a
spike, the potential is reset to 0. However, it becomes a problem if
we leverage the potential as an output signal since the rest opera-
tion breaks the temporal cues. To address the problem, we design
to use the average of the output potentials as the output signal.
Experiment (J) validates the effectiveness of this design.

7 CONCLUSION
In this work, we introduce a novel wearable single-eye-based emo-
tion recognition prototype that can effectively estimate emotions
under challenging lighting conditions. To this end, we investigate
event-based camera inputs for emotion recognition. Due to the
high dynamic range and temporal resolution of event-based cam-
eras, the captured events can robustly encode temporal informa-
tion under different lighting conditions. However, the captured
events are asynchronous, noisy, and lack texture cues. We intro-
duce SEEN, a novel learning-based solution to extract informa-
tive temporal cues for emotion recognition. SEEN introduces two
novel design components: a weight-copy scheme and a CNN-SNN-
based temporal feature extractor. The former injects spatial atten-
tion into temporal feature extraction during the training and in-
ference phases. The latter exploits both spatial awareness and the
spiking mechanism of SNNs to provide discriminative features for
emotion classification effectively. Our extensive experimental re-
sults show that SEEN can effectively estimate an emotion from
any phase of the emotion. To the best of our knowledge, SEEN is

the first attempt at leveraging event-based cameras and SNNs for
emotion recognition tasks.

ACKNOWLEDGMENTS
This work was supported in part by the National Key Research and
Development Programof China (2022ZD0210500), theNational Nat-
ural Science Foundation of China under Grants 61972067/U21A2049-
1, and the Distinguished Young Scholars Funding of Dalian (No.
2022RJ01). Pieter Peers was supported in part by NSF grant IIS-
1909028. Felix Heide was supported by an NSF CAREER Award
(2047359), a Packard Foundation Fellowship, a Sloan Research Fel-
lowship, a Sony Young FacultyAward, a Project X InnovationAward,
and an Amazon Science Research Award.

REFERENCES
Bradley M. Appelhans and Linda J. Luecken. 2006. Heart Rate Variability as an Index

of Regulated Emotional Responding. Review of General Psychology 10, 3 (2006),
229–240. https://doi.org/10.1037/1089-2680.10.3.229

Xavier P. Burgos-Artizzu, Julien Fleureau, Olivier Dumas, Thierry Tapie, François
LeClerc, and Nicolas Mollet. 2015. Real-Time Expression-Sensitive HMD Face
Reconstruction. In SIGGRAPH Asia 2015 Technical Briefs (Kobe, Japan) (SA ’15).
Association for Computing Machinery, New York, NY, USA, Article 9, 4 pages.
https://doi.org/10.1145/2820903.2820910

Jean Costa, François Guimbretière, Malte F. Jung, and Tanzeem Choudhury. 2019.
BoostMeUp: Improving Cognitive Performance in the Moment by Unobtrusively
Regulating Emotions with a Smartwatch. Proc. ACM Interact. Mob. Wearable Ubiq-
uitous Technol. 3, 2, Article 40 (jun 2019), 23 pages. https://doi.org/10.1145/3328911

David Couret, Pierre Simeone, Sébastien Freppel, and Lionel J Velly. 2019. The effect
of ambient-light conditions on quantitative pupillometry: a history of rubber cup.
Neurocritical Care 30 (2019), 492–493.

Didan Deng, Zhaokang Chen, and Bertram E Shi. 2020a. Multitask emotion recog-
nition with incomplete labels. In 2020 15th IEEE International Conference on Au-
tomatic Face and Gesture Recognition (FG 2020) (Buenos Aires, Argentina). IEEE,
592–599. https://doi.org/10.1109/FG47880.2020.00131

Didan Deng, Zhaokang Chen, Yuqian Zhou, and Bertram Shi. 2020b. Mimamo net:
Integrating micro-and macro-motion for video emotion recognition. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, Vol. 34. Assoc Advancement
Artificial Intelligence, 2621–2628.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition. 248–255. https://doi.org/10.1109/CVPR.2009.5206848

Jianchuan Ding, Bo Dong, Felix Heide, Yufei Ding, Yunduo Zhou, Baocai Yin, and
Xin Yang. 2022. Biologically Inspired Dynamic Thresholds for Spiking Neural Net-
works. In Advances in Neural Information Processing Systems. https://doi.org/10.
48550/arXiv.2206.04426

Paul Ekman and Wallace V Friesen. 1978. Facial action coding systems. Consulting
Psychologists Press.

Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian Taba,
Andrea Censi, Stefan Leutenegger, Andrew J. Davison, Jörg Conradt, Kostas Dani-
ilidis, and Davide Scaramuzza. 2022. Event-Based Vision: A Survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 44, 1 (2022), 154–180. https:
//doi.org/10.1109/TPAMI.2020.3008413

Daniel Gehrig, Antonio Loquercio, Konstantinos G Derpanis, and Davide Scaramuzza.
2019. End-to-end learning of representations for asynchronous event-based data.
In Proceedings of the IEEE/CVF International Conference on Computer Vision. 5633–
5643. https://doi.org/10.1109/ICCV.2019.00573

Daniel Gehrig, Michelle Rüegg, Mathias Gehrig, Javier Hidalgo-Carrió, and Davide
Scaramuzza. 2021. Combining Events and Frames Using Recurrent Asynchronous
Multimodal Networks for Monocular Depth Prediction. IEEE Robotics and Automa-
tion Letters 6, 2 (2021), 2822–2829. https://doi.org/10.1109/LRA.2021.3060707

Mariana-Iuliana Georgescu and Radu Tudor Ionescu. 2019. Recognizing facial ex-
pressions of occluded faces using convolutional neural networks. In International
Conference on Neural Information Processing, Vol. 1142. Springer, 645–653. https:
//doi.org/10.1007/978-3-030-36808-1_70

WulframGerstner andWernerM. Kistler. 2002. Spiking NeuronModels: Single Neurons,
Populations, Plasticity.

Anna Gruebler and Kenji Suzuki. 2014. Design of a Wearable Device for Reading Pos-
itive Expressions from Facial EMG Signals. IEEE Transactions on Affective Comput-
ing 5, 3 (2014), 227–237. https://doi.org/10.1109/TAFFC.2014.2313557

KenshoHara, Hirokatsu Kataoka, and Yutaka Satoh. 2018. Can spatiotemporal 3d cnns
retrace the history of 2d cnns and imagenet?. In Proceedings of the IEEE conference

https://doi.org/10.1037/1089-2680.10.3.229
https://doi.org/10.1145/2820903.2820910
https://doi.org/10.1145/3328911
https://doi.org/10.1109/FG47880.2020.00131
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.48550/arXiv.2206.04426
https://doi.org/10.48550/arXiv.2206.04426
https://doi.org/10.1109/TPAMI.2020.3008413
https://doi.org/10.1109/TPAMI.2020.3008413
https://doi.org/10.1109/ICCV.2019.00573
https://doi.org/10.1109/LRA.2021.3060707
https://doi.org/10.1007/978-3-030-36808-1_70
https://doi.org/10.1007/978-3-030-36808-1_70
https://doi.org/10.1109/TAFFC.2014.2313557


In the Blink of an Eye: Event-based Emotion Recognition SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

on Computer Vision and Pattern Recognition. 6546–6555. https://doi.org/10.1109/
CVPR.2018.00685

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 770–778. https://doi.org/10.1109/CVPR.2016.90

Steven Hickson, Nick Dufour, Avneesh Sud, Vivek Kwatra, and Irfan Essa. 2019. Eye-
motion: Classifying facial expressions in VR using eye-tracking cameras. In 2019
IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 1626–
1635. https://doi.org/10.1109/WACV.2019.00178

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Bita Houshmand and Naimul Mefraz Khan. 2020. Facial expression recognition under
partial occlusion from virtual reality headsets based on transfer learning. In 2020
IEEE Sixth International Conference on Multimedia Big Data (BigMM). IEEE, 70–75.
https://doi.org/10.1109/BigMM50055.2020.00020

Xinya Ji, Hang Zhou, KaisiyuanWang, QianyiWu,WayneWu, Feng Xu, and Xun Cao.
2022. EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware
Motion Model. In ACM SIGGRAPH 2022 Conference Proceedings (SIGGRAPH ’22).
1–10. https://doi.org/10.1145/3528233.3530745

Anil Kag and Venkatesh Saligrama. 2021. Time adaptive recurrent neural network. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 15149–15158. https://doi.org/10.1109/CVPR46437.2021.01490

Xavier Lagorce, Garrick Orchard, Francesco Galluppi, Bertram E Shi, and Ryad B
Benosman. 2017. Hots: a hierarchy of event-based time-surfaces for pattern recog-
nition. IEEE transactions on pattern analysis and machine intelligence 39, 7 (2017),
1346–1359. https://doi.org/10.1109/TPAMI.2016.2574707

Jiyoung Lee, Seungryong Kim, Sunok Kim, Jungin Park, and Kwanghoon Sohn. 2019.
Context-aware emotion recognition networks. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision. 10143–10152. https://doi.org/10.1109/
ICCV.2019.01024

Jiyoung Lee, Sunok Kim, Seungryong Kim, and Kwanghoon Sohn. 2020. Multi-modal
recurrent attention networks for facial expression recognition. IEEE Transac-
tions on Image Processing 29 (2020), 6977–6991. https://doi.org/10.1109/TIP.2020.
2996086

Hao Li, Laura Trutoiu, Kyle Olszewski, Lingyu Wei, Tristan Trutna, Pei-Lun Hsieh,
Aaron Nicholls, and Chongyang Ma. 2015. Facial Performance Sensing Head-
Mounted Display. ACM Trans. Graph. 34, 4, Article 47 (jul 2015), 9 pages. https:
//doi.org/10.1145/2766939

Mi Li, Hongpei Xu, Xingwang Liu, and Shengfu Lu. 2018. Emotion recognition from
multichannel EEG signals using K-nearest neighbor classification. Technology and
Health Care 26 (04 2018), 509–519. https://doi.org/10.3233/THC-174836

Junxiu Liu, Guopei Wu, Yuling Luo, Senhui Qiu, Su Yang, Wei Li, and Yifei Bi. 2020.
EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Au-
toencoder. Frontiers in Systems Neuroscience 14 (2020). https://doi.org/10.3389/
fnsys.2020.00043

Jorge C. Lucero and Kevin G. Munhall. 1999. A model of facial biomechanics for
speech production. The Journal of the Acoustical Society of America 106 5 (1999),
2834–2842. https://doi.org/10.1121/1.428108

Ana I Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso García, and Davide
Scaramuzza. 2018. Event-based vision meets deep learning on steering prediction
for self-driving cars. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 5419–5427. https://doi.org/10.1109/CVPR.2018.00568

Sebastiaan Mathôt. 2018. Pupillometry: Psychology, Physiology, and Function. Jour-
nal of Cognition 1 (02 2018). https://doi.org/10.5334/joc.18

Seungjun Nah, Sanghyun Son, and Kyoung Mu Lee. 2019. Recurrent neural networks
with intra-frame iterations for video deblurring. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 8094–8103. https://doi.
org/10.1109/CVPR.2019.00829

Jingping Nie, Yigong Hu, Yuanyuting Wang, Stephen Xia, and Xiaofan Jiang. 2020.
SPIDERS: Low-Cost Wireless Glasses for Continuous In-Situ Bio-Signal Acquisi-
tion and Emotion Recognition. In 2020 IEEE/ACM Fifth International Conference on
Internet-of-Things Design and Implementation (IoTDI). 27–39. https://doi.org/10.
1109/IoTDI49375.2020.00011

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32. Cur-
ran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

Delian Ruan, Yan Yan, Shenqi Lai, Zhenhua Chai, Chunhua Shen, and Hanzi Wang.
2021. Feature decomposition and reconstruction learning for effective facial ex-
pression recognition. In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. 7660–7669. https://doi.org/10.1109/CVPR46437.2021.
00757

Enrique Sanchez, Mani Kumar Tellamekala, Michel Valstar, and Georgios Tzimiropou-
los. 2021. Affective Processes: stochastic modelling of temporal context for emo-
tion and facial expression recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 9074–9084. https://doi.org/10.1109/
CVPR46437.2021.00896

B. Schuller, B. Vlasenko, F. Eyben, M. Wo?Llmer, A. Stuhlsatz, A. Wendemuth, and G.
Rigoll. 2011. Cross-Corpus Acoustic Emotion Recognition: Variances and Strate-
gies. IEEE Transactions on Affective Computing 1, 2 (2011), 119–131. https:
//doi.org/10.1109/T-AFFC.2010.8

Du Tran, HengWang, Lorenzo Torresani, Jamie Ray, Yann LeCun, andManohar Paluri.
2018. A closer look at spatiotemporal convolutions for action recognition. In Pro-
ceedings of the IEEE conference on Computer Vision and Pattern Recognition. 6450–
6459. https://doi.org/10.1109/CVPR.2018.00675

Yanxiang Wang, Xian Zhang, Yiran Shen, Bowen Du, Guangrong Zhao, Lizhen
Cui Cui Lizhen, and Hongkai Wen. 2022. Event-Stream Representation for Human
Gaits Identification Using Deep Neural Networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence 44, 7 (2022), 3436–3449. https://doi.org/10.1109/
TPAMI.2021.3054886

Hao Wu, Jinghao Feng, Xuejin Tian, Edward Sun, Yunxin Liu, Bo Dong, Fengyuan
Xu, and Sheng Zhong. 2020. EMO: Real-time emotion recognition from single-
eye images for resource-constrained eyewear devices. In Proceedings of the 18th
International Conference on Mobile Systems, Applications, and Services. 448–461.
https://doi.org/10.1145/3386901.3388917

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. 2018. Spatio-temporal back-
propagation for training high-performance spiking neural networks. Frontiers in
neuroscience 12 (2018), 331. https://doi.org/10.3389/fnins.2018.00331

Fanglei Xue, QiangchangWang, and Guodong Guo. 2021. Transfer: Learning relation-
aware facial expression representations with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 3601–3610. https://doi.org/
10.1109/ICCV48922.2021.00358

Jiqing Zhang, Xin Yang, Yingkai Fu, Xiaopeng Wei, Baocai Yin, and Bo Dong. 2021b.
Object tracking by jointly exploiting frame and event domain. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 13043–13052. https:
//doi.org/10.1109/ICCV48922.2021.01280

Yuhang Zhang, Chengrui Wang, and Weihong Deng. 2021a. Relative Uncertainty
Learning for Facial Expression Recognition. Advances in Neural Information Pro-
cessing Systems 34 (2021), 17616–17627.

Zengqun Zhao and Qingshan Liu. 2021. Former-DFER: Dynamic Facial Expression
Recognition Transformer. In Proceedings of the 29th ACM International Conference
on Multimedia. 1553–1561. https://doi.org/10.1145/3474085.3475292

https://doi.org/10.1109/CVPR.2018.00685
https://doi.org/10.1109/CVPR.2018.00685
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/WACV.2019.00178
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/BigMM50055.2020.00020
https://doi.org/10.1145/3528233.3530745
https://doi.org/10.1109/CVPR46437.2021.01490
https://doi.org/10.1109/TPAMI.2016.2574707
https://doi.org/10.1109/ICCV.2019.01024
https://doi.org/10.1109/ICCV.2019.01024
https://doi.org/10.1109/TIP.2020.2996086
https://doi.org/10.1109/TIP.2020.2996086
https://doi.org/10.1145/2766939
https://doi.org/10.1145/2766939
https://doi.org/10.3233/THC-174836
https://doi.org/10.3389/fnsys.2020.00043
https://doi.org/10.3389/fnsys.2020.00043
https://doi.org/10.1121/1.428108
https://doi.org/10.1109/CVPR.2018.00568
https://doi.org/10.5334/joc.18
https://doi.org/10.1109/CVPR.2019.00829
https://doi.org/10.1109/CVPR.2019.00829
https://doi.org/10.1109/IoTDI49375.2020.00011
https://doi.org/10.1109/IoTDI49375.2020.00011
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/CVPR46437.2021.00757
https://doi.org/10.1109/CVPR46437.2021.00757
https://doi.org/10.1109/CVPR46437.2021.00896
https://doi.org/10.1109/CVPR46437.2021.00896
https://doi.org/10.1109/T-AFFC.2010.8
https://doi.org/10.1109/T-AFFC.2010.8
https://doi.org/10.1109/CVPR.2018.00675
https://doi.org/10.1109/TPAMI.2021.3054886
https://doi.org/10.1109/TPAMI.2021.3054886
https://doi.org/10.1145/3386901.3388917
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1109/ICCV48922.2021.00358
https://doi.org/10.1109/ICCV48922.2021.00358
https://doi.org/10.1109/ICCV48922.2021.01280
https://doi.org/10.1109/ICCV48922.2021.01280
https://doi.org/10.1145/3474085.3475292


SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Zhang, et al.

Happiness emotion under normal condition

Disgust emotion under normal condition

Anger emotion under overexposure condition

Fear emotion under overexposure condition
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Figure 4: We show four examples across four different emotions, Fear, Anger, Disgust, and Happiness, under overexposure
and normal lighting conditions. The frames marked with red boxes are the inputs for EMO [Wu et al. 2020] and Eyemotion
[Hickson et al. 2019], which is also the first input frame of our approach. Our approach offers the most accurate emotion
predictions under all test settings.
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Surprise emotion under HDR condition

Sadness emotion under HDR condition

Anger emotion under low-light condition

Surprise emotion under low-light condition

EMO Eyemotion Ours (E4-S0) Ours (E4-S1) Ours (E4-S3)

EMO Eyemotion Ours (E4-S0) Ours (E4-S1) Ours (E4-S3)

EMO Eyemotion Ours (E4-S0) Ours (E4-S1) Ours (E4-S3)
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Figure 5: We show four additional examples across another four different emotions, Surprise, Sadness, Anger, and Surprise,
underHDRand low-light conditions.The framesmarkedwith red boxes are the inputs for EMO [Wuet al. 2020] andEyemotion
[Hickson et al. 2019], which is also the first input frame of our approach. Our approach offers the most accurate emotion
predictions under all test settings.
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